scholarly journals LATLAUNCH AIR-LAUNCH SYSTEM FOR LOW-COST LAUNCHING OF SMALL SATELLITES INTO LOW EARTH ORBIT

Aviation ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 73-78
Author(s):  
Aleksandrs Urbahs ◽  
Sergey Kravchenko ◽  
Margarita Urbaha ◽  
Kristine Carjova ◽  
Natalja Panova ◽  
...  

The paper presents the air-launch system enabling the delivery of small satellites into low Earth orbit. One of the most important advantages of the concept is its cost. Generally, the paper proves that launching a carrier from an aerial platform (a movable launch pad) provides the whole range of competitive advantages. In particular, the total losses during the launch from an aerial platform will reduce by 20–35%, and the characteristic velocity of the maneuver will reduce by 4–7%.

2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Francisco Miranda

In the last years the small satellites have played an important role in the technological development. The attractive short period of design and low cost of them and the capacity to solve problems that are usually considered as problems to big and expensive spacecrafts lead us to study the control problem of these satellites. Active three-axis magnetic attitude stabilization of a low Earth orbit satellite is considered in this work. The control is created by interaction between the magnetic moment generated by magnetorquers mounted on the satellite body and the geomagnetic field. This problem is quite complex and difficult to solve. To overcome this difficulty guidance control is considered, where we use ε-strategies introduced by Pontryagin in the frame of differential games theory. Qualitative analysis and results of numerical simulation are presented.


2020 ◽  
Author(s):  
SAFWAN ALFATTANI ◽  
Wael Jaafar ◽  
Yassine Hmamouche ◽  
Halim Yanikomeroglu ◽  
Abbas Yongacoglu

In this paper, we derive the link budget relations for<br>communications assisted by reconfigurable smart surfaces (RSS).<br>Specifically, under specular and scattering paradigms, we provide<br>link budget expressions for an RSS-assisted communication on<br>the ground, where the RSS is either mounted on a building, or on<br>an aerial platform, such as an unmanned aerial vehicle (UAV),<br>a high altitude platform station (HAPS), or a low-earth orbit<br>satellite (LEO). The obtained numerical results provide design<br>guidelines for RSS-assisted communication systems, including the<br>recommended aerial platform to use, the size of RSS for each<br>type of the platforms, and the operating frequencies. <br>


1992 ◽  
Vol 31 (4) ◽  
pp. 447 ◽  
Author(s):  
N. A. Massie ◽  
Yale Oster ◽  
Greg Poe ◽  
Lynn Seppala ◽  
Mike Shao

2019 ◽  
Vol 91 (2) ◽  
pp. 381-403
Author(s):  
Nikolaos Kehayas

Purpose The purpose of this paper is to attempt an aerospaceplane design with the objective of Low-Earth-Orbit-and-Return-to-Earth (LEOARTE) under the constraints of safety, low cost, reliability, low maintenance, aircraft-like operation and environmental compatibility. Along the same lines, a “sister” point-to-point flight on Earth Suborbital Aerospaceplane is proposed. Design/methodology/approach The LEOARTE aerospaceplane is based on a simple design, proven low risk technology, a small payload, an aerodynamic solution to re-entry heating, the high-speed phase of the outgoing flight taking place outside the atmosphere, a propulsion system comprising turbojet and rocket engines, an Air Collection and Enrichment System (ACES) and an appropriate mission profile. Findings It was found that a LEOARTE aerospaceplane design subject to the specified constraints with a cost as low as 950 United States Dollars (US$) per kilogram into Low Earth Orbit (LEO) might be feasible. As indicated by a case study, a LEOARTE aerospaceplane could lead, among other activities in space, to economically viable Space-Based Solar Power (SBSP). Its “sister” Suborbital aerospaceplane design could provide high-speed, point-to-point flights on the Earth. Practical implications The proposed LEOARTE aerospaceplane design renders space exploitation affordable and is much safer than ever before. Originality/value This paper provides an alternative approach to aerospaceplane design as a result of a new aerodynamically oriented Thermal Protection System (TPS) and a, perhaps, improved ACES. This approach might initiate widespread exploitation of space and offer a solution to the high-speed “air” transportation issue.


2014 ◽  
Vol 23 (10) ◽  
pp. 1450148 ◽  
Author(s):  
DANIELE DAVALLE ◽  
RICCARDO CASSETTARI ◽  
SERGIO SAPONARA ◽  
LUCA FANUCCI ◽  
LUCA CUCCHI ◽  
...  

This paper presents a flexible Telemetry, Tracking & Command (TT&C) transponder for Earth Observation (EO) small satellites. The proposed device adds to the state-of-the-art EO TT&C transponders the possibility of scientific data transfer thanks to the high downlink data-rate (up to 40 Mbps) and in-flight reconfigurability via Telecomand (TC). The integration of these features in one single device represents a considerable optimization in terms of mass budget, which is important for EO small satellites. Furthermore, in-flight reconfigurability of communication parameters via TC is important for in-orbit link optimization, which is especially useful for Low-Earth Orbit (LEO) satellites where visibility can be as short as few hundreds of seconds. The proposed transponder is a digital radio unit working at 70 MHz intermediate frequency (IF). A new custom and configurable hardware accelerator was developed to cover intensive radio DSP functions at IF. The custom hardware is integrated in a single FPGA with a space-compliant processor core, for control, configuration and interface with the other satellite subsystems. All the quantization parameters were fine-tailored to reach a trade-off between hardware complexity and implementation loss (IL). The IF RX/TX ports require eight bits and seven bits, respectively. The IL is 0.5 dB at BER = 10-5 for the RX chain. A system proof-of-concept was implemented on the Xilinx Virtex 6 VLX75T-FF484 FPGA. The total device occupation is 82%. The power consumption of the design fitted in FPGA is less than 2 W. The power consumption of the whole demonstrator board is less than 9 W.


Biosensors ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 38
Author(s):  
Ada Kanapskyte ◽  
Elizabeth M. Hawkins ◽  
Lauren C. Liddell ◽  
Shilpa R. Bhardwaj ◽  
Diana Gentry ◽  
...  

In light of future missions beyond low Earth orbit (LEO) and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined in order to develop protective countermeasures. Although many biological experiments have been performed in space since the 1960s, most have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, and have utilized a broad range of technologies. However, given the constraints of the deep space environment, upcoming deep space biological missions will be largely limited to microbial organisms and plant seeds using miniaturized technologies. Small satellites such as CubeSats are capable of querying relevant space environments using novel, miniaturized instruments and biosensors. CubeSats also provide a low-cost alternative to larger, more complex missions, and require minimal crew support, if any. Several have been deployed in LEO, but the next iterations of biological CubeSats will travel beyond LEO. They will utilize biosensors that can better elucidate the effects of the space environment on biology, allowing humanity to return safely to deep space, venturing farther than ever before.


Sign in / Sign up

Export Citation Format

Share Document