nociceptive fibers
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Annabelle Réaux-Le Goazigo ◽  
Benoit Beliard ◽  
Line Rahal ◽  
Julien Claron ◽  
Noémi Renaudin ◽  
...  

Abstract The functional imaging of the neurovascular coupling within the trigeminal ganglion (TG) is highly challenging due to its small size and its deep localization. This study combined a methodological framework able to dive into the rat trigeminal nociceptive system by jointly providing first imaging of the trigeminal ganglion blood vasculature at microscopic resolution and the measurement of its neurovascular coupling in the rat TG evoked by corneal stimulations, a robust and clinically-relevant model. Using functional ultrasound imaging (fUS), we were able to image and quantify a strong hemodynamic response in the ipsilateral TG from anesthetized rats, evoked by mechanical or chemical stimulations of corneal nociceptive fibers to intact cornea, even though TG involves less than 300 sensory neurons. The in vivo quantitative imaging of the TG’s vasculature using ultrasound localization microscopy (ULM) combined with ex-vivo (DiI) staining reveals particular features of the vascularization of the area containing the sensory neurons, that is likely the origin of this strong vaso-trigeminal response and due to the nature of this structure at the interface between the peripheral and central nervous systems. This innovative imaging approach opens the path for future studies on the mechanisms underlying changes in trigeminal local blood flow and neurovascular coupling, key mechanisms and readouts for the understanding and treatment of debilitating trigeminal pain conditions.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 778
Author(s):  
James N. Campbell ◽  
Randall Stevens ◽  
Peter Hanson ◽  
James Connolly ◽  
Diana S. Meske ◽  
...  

Capsaicin is a potent agonist of the TRPV1 channel, a transduction channel that is highly expressed in nociceptive fibers (pain fibers) throughout the peripheral nervous system. Given the importance of TRPV1 as one of several transduction channels in nociceptive fibers, much research has been focused on the potential therapeutic benefits of using TRPV1 antagonists for the management of pain. However, an antagonist has two limitations. First, an antagonist in principle generally only affects one receptor. Secondly, most antagonists must have an ongoing presence on the receptor to have an effect. Capsaicin overcomes both liabilities by disrupting peripheral terminals of nociceptive fibers that express TRPV1, and thereby affects all of the potential means of activating that pain fiber (not just TRPV1 function). This disruptive effect is dependent on the dose and can occur within minutes. Thus, unlike a typical receptor antagonist, continued bioavailability at the level of the receptor is not necessary. By disrupting the entire terminal of the TRPV1-expressing nociceptive fiber, capsaicin blocks all the activation mechanisms within that fiber, and not just TRPV1 function. Topical capsaicin, an FDA approved treatment for neuropathic pain, addresses pain from abnormal nociceptor activity in the superficial layers of the skin. Effects after a single administration are evident over a period of weeks to months, but in time are fully reversible. This review focuses on the rationale for using capsaicin by injection for painful conditions such as osteoarthritis (OA) and provides an update on studies completed to date.


2020 ◽  
Author(s):  
Ludivine Pidoux ◽  
Kevin Delanoe ◽  
Eric Lingueglia ◽  
Emmanuel Deval

ABSTRACTLysophosphatidyl-choline (LPC), a member of the phospholipid family, has recently emerged as an interesting new player in pain. It has been proposed to mediate pain through Acid-Sensing Ion Channel 3 (ASIC3), a pain-related channel mainly expressed in peripheral sensory neurons. LPC potentiates ASIC3 current evoked by mild acidifications, but can also activate the channel at physiological pH, and its local injection in rodents evokes ASIC3-dependent pain. We combine here in vivo recordings of spinal cord neuron activity with subcutaneous LPC injection to analyze the mechanism of action associated with the LPC-induced, ASIC3-dependent pain in peripheral and spinal cord neurons. We show that a single cutaneous injection of LPC exclusively affects the nociceptive pathway. It evokes an ASIC3-dependent short-term sensitization of nociceptive fibers that drives hyperexcitability of projecting neurons within the dorsal spinal cord without apparent central sensitization.


2020 ◽  
Vol 729 ◽  
pp. 135006
Author(s):  
Marco Pagliusi Jr. ◽  
Ivan José Magayewski Bonet ◽  
Júlia Borges Paes Lemes ◽  
Anna Lethicia Lima Oliveira ◽  
Nathalia Santos Carvalho ◽  
...  

2020 ◽  
Author(s):  
Chelsea Handfield ◽  
Jeffery Kwock ◽  
Vivian Lei ◽  
Min Jin Lee ◽  
Margaret Coates ◽  
...  

2019 ◽  
Vol 380 (1) ◽  
pp. 43-57
Author(s):  
Roland Blumer ◽  
Sandra Boesmueller ◽  
Bernhard Gesslbauer ◽  
Lena Hirtler ◽  
Daniel Bormann ◽  
...  

AbstractThe innervation of the long head of the biceps tendon (LHBT) is not sufficiently documented. This is a drawback since pathologies of the LHBT are a major source of shoulder pain. Thus, the study aimed to characterize structurally and molecularly nervous elements of the LHBT. The proximal part of 11 LHBTs was harvested intraoperatively. There were 8 female and 3 male specimens. Age ranged from 66 to 86 years. For structural analyses, nervous elements were viewed in the transmission electron microscope. For molecular characterization, we used general neuronal markers including antibodies against neurofilament and protein gene product 9.5 (PGP9.5) as well as specific neuronal markers including antibodies against myelin basic protein (MBP), calcitonin gene-related product (CGRP), substance P (SP), tyrosine hydroxylase (TH), and growth-associated protein 43 (GAP43). Anti-neurofilament and anti-PGP9.5 visualized the overall innervation. Anti-MBP visualized myelination, anti-CGRP and anti-SP nociceptive fibers, anti-TH sympathetic nerve fibers, and anti-GAP43 nerve fibers during development and regeneration. Immunolabeled sections were analyzed in the confocal laser scanning microscope. We show that the LHBT contains unmyelinated as well as myelinated nerve fibers which group in nerve fascicles and follow blood vessels. Manny myelinated and unmyelinated axons exhibit molecular features of nociceptive nerve fibers. Another subpopulation of unmyelinated axons exhibits molecular characteristics of sympathetic nerve fibers. Unmyelinated sympathetic fibers and unmyelinated nociceptive fibers express proteins that are found during development and regeneration. Present findings support the hypothesis that ingrowth of nociceptive fibers are the source of chronic tendon pain.


2019 ◽  
Vol 8 (12) ◽  
pp. 2129
Author(s):  
Sandra Boesmueller ◽  
Roland Blumer ◽  
Bernhard Gesslbauer ◽  
Lena Hirtler ◽  
Christian Fialka ◽  
...  

The type II superior labrum anterior to posterior (SLAP) repair is a viable option in young and demanding patients, although a prolonged period of pain after surgery is described in the literature. The reason for this fact remains unknown. Thus, the purpose of this study was to investigate the molecular pattern of the biceps tendon anchor, where the sutures for repair are placed. The long head of the biceps tendon (LHBT), including the superior labrum, was dissected in the setting of reverse total shoulder arthroplasty. Immunohistochemical staining was performed using neurofilament (NF) and protein gene product (PGP) 9.5 as general markers for axons and calcitonin gene-related peptide (CGRP) and substance P for nociceptive transmission. A quantitative assessment was performed according to the two regions of interest (ROIs), i.e., the anterosuperior (ROI I) and the posterosuperior labrum (ROI II). Eleven LHBTs with a mean age of 73 years (range: 66–87 years) were harvested intraoperatively. Six LHBTs were gained in osteoarthrosis and five in fractures. We found an inhomogeneous distribution of axons in the anterosuperior and posterosuperior parts of the labrum in all the specimens irrespective of the age, gender, and baseline situation. There was a significantly higher number (p < 0.01) as well as density (p < 0.001) of NF-positive axons in ROI I compared to ROI II. Nociceptive fibers were always found along the NF-positive axons. Thus, our results indicate that the biceps tendon anchor itself is a highly innervated region comprising different nerve qualities. The anterosuperior labrum contains a higher absolute number and density of axons compared to the posterosuperior parts. Furthermore, we were able to prove the presence of nociceptive fibers in the superior labrum. The results obtained in this study could contribute to the variability of pain after SLAP repair.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Rosa Hugosdottir ◽  
Carsten Dahl Mørch ◽  
Ole Kæseler Andersen ◽  
Thordur Helgason ◽  
Lars Arendt-Nielsen

Abstract Background Electrical stimulation is widely used in experimental pain research but it lacks selectivity towards small nociceptive fibers. When using standard surface patch electrodes and rectangular pulses, large fibers are activated at a lower threshold than small fibers. Pin electrodes have been designed for overcoming this problem by providing a higher current density in the upper epidermis where the small nociceptive fibers mainly terminate. At perception threshold level, pin electrode stimuli are rather selectively activating small nerve fibers and are perceived as painful, but for high current intensity, which is usually needed to evoke sufficient pain levels, large fibers are likely co-activated. Long duration current has been shown to elevate the threshold of large fibers by the mechanism of accommodation. However, it remains unclear whether the mechanism of accommodation in large fibers can be utilized to activate small fibers even more selectively by combining pin electrode stimulation with a long duration pulse. Results In this study, perception thresholds were determined for a patch- and a pin electrode for different pulse shapes of long duration. The perception threshold ratio between the two different electrodes was calculated to estimate the ability of the pulse shapes to preferentially activate small fibers. The perception threshold ratios were compared between stimulation pulses of 5- and 50 ms durations and shapes of: exponential increase, linear increase, bounded exponential, and rectangular. Qualitative pain perception was evaluated for all pulse shapes delivered at 10 times perception threshold. The results showed a higher perception threshold ratio for long duration 50 ms pulses than for 5 ms pulses. The highest perception threshold ratio was found for the 50 ms, bounded exponential pulse shape. Results furthermore revealed different strength-duration relation between the bounded exponential- and rectangular pulse shapes. Pin electrode stimulation at high intensity was mainly described as “stabbing”, “shooting”, and “sharp”. Conclusion These results indicate that long duration pulses with a bounded exponential increase preferentially activate the small nociceptive fibers with a pin electrode and concurrently cause elevated threshold of large non-nociceptive fibers with patch electrodes.


Sign in / Sign up

Export Citation Format

Share Document