temporal code
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Matteo Guardamagna ◽  
Federico Stella ◽  
Francesco P. Battaglia

The hippocampus likely uses temporal coding to represent complex memories via mechanisms such as theta phase precession and theta sequences. Theta sequences are rapid sweeps of spikes from multiple place cells, encoding past or planned trajectories or non-spatial information. Phase precession, the correlation between a place cell's theta firing phase and animal position has been suggested to facilitate sequence emergence. We find that CA1 phase precession varies strongly across cells and environmental contingencies. Phase precession depends on the CA1 network state, and is only present when the medium gamma oscillation (60-90 Hz, linked to Entorhinal inputs) dominates. Conversely, theta sequences are most evident for non-precessing cells or with leading slow gamma (20-45 Hz, linked to CA3 inputs). These results challenge the view that phase precession is the mechanism underlying the emergence of theta sequences and point at a 'dual network states' model for hippocampal temporal code, potentially supporting merging of memory and exogenous information in CA1.


Immunity ◽  
2021 ◽  
Vol 54 (5) ◽  
pp. 845-847
Author(s):  
Neha Cheemalavagu ◽  
Rachel A. Gottschalk
Keyword(s):  

2019 ◽  
Vol 122 (6) ◽  
pp. 2468-2485 ◽  
Author(s):  
Yaqing Su ◽  
Bertrand Delgutte

Harmonic complex tones (HCTs) found in speech, music, and animal vocalizations evoke strong pitch percepts at their fundamental frequencies. The strongest pitches are produced by HCTs that contain harmonics resolved by cochlear frequency analysis, but HCTs containing solely unresolved harmonics also evoke a weaker pitch at their envelope repetition rate (ERR). In the auditory periphery, neurons phase lock to the stimulus envelope, but this temporal representation of ERR degrades and gives way to rate codes along the ascending auditory pathway. To assess the role of the inferior colliculus (IC) in such transformations, we recorded IC neuron responses to HCT and sinusoidally modulated broadband noise (SAMN) with varying ERR from unanesthetized rabbits. Different interharmonic phase relationships of HCT were used to manipulate the temporal envelope without changing the power spectrum. Many IC neurons demonstrated band-pass rate tuning to ERR between 60 and 1,600 Hz for HCT and between 40 and 500 Hz for SAMN. The tuning was not related to the pure-tone best frequency of neurons but was dependent on the shape of the stimulus envelope, indicating a temporal rather than spectral origin. A phenomenological model suggests that the tuning may arise from peripheral temporal response patterns via synaptic inhibition. We also characterized temporal coding to ERR. Some IC neurons could phase lock to the stimulus envelope up to 900 Hz for either HCT or SAMN, but phase locking was weaker with SAMN. Together, the rate code and the temporal code represent a wide range of ERR, providing strong cues for the pitch of unresolved harmonics. NEW & NOTEWORTHY Envelope repetition rate (ERR) provides crucial cues for pitch perception of frequency components that are not individually resolved by the cochlea, but the neural representation of ERR for stimuli containing many harmonics is poorly characterized. Here we show that the pitch of stimuli with unresolved harmonics is represented by both a rate code and a temporal code for ERR in auditory midbrain neurons and propose possible underlying neural mechanisms with a computational model.


2019 ◽  
Vol 29 (08) ◽  
pp. 1950003 ◽  
Author(s):  
Agnieszka Pregowska ◽  
Ehud Kaplan ◽  
Janusz Szczepanski

The nature of neural codes is central to neuroscience. Do neurons encode information through relatively slow changes in the firing rates of individual spikes (rate code) or by the precise timing of every spike (temporal code)? Here we compare the loss of information due to correlations for these two possible neural codes. The essence of Shannon’s definition of information is to combine information with uncertainty: the higher the uncertainty of a given event, the more information is conveyed by that event. Correlations can reduce uncertainty or the amount of information, but by how much? In this paper we address this question by a direct comparison of the information per symbol conveyed by the words coming from a binary Markov source (temporal code) with the information per symbol coming from the corresponding Bernoulli source (uncorrelated, rate code). In a previous paper we found that a crucial role in the relation between information transmission rates (ITRs) and firing rates is played by a parameter [Formula: see text], which is the sum of transition probabilities from the no-spike state to the spike state and vice versa. We found that in this case too a crucial role is played by the same parameter [Formula: see text]. We calculated the maximal and minimal bounds of the quotient of ITRs for these sources. Next, making use of the entropy grouping axiom, we determined the loss of information in a Markov source compared with the information in the corresponding Bernoulli source for a given word length. Our results show that in the case of correlated signals the loss of information is relatively small, and thus temporal codes, which are more energetically efficient, can replace rate codes effectively. These results were confirmed by experiments.


Science ◽  
2019 ◽  
Vol 365 (6448) ◽  
pp. 40.13-42
Author(s):  
Pamela J. Hines

Author(s):  
Alla Bondarenko ◽  

Time is not only a form of matter existence, a fourth coordinate, but also a category of linguistic culture, a phenomenon of a specific conceptual worldview. The present study aims to examine the linguistic and worldview phenomena which have specific linguocultural features, in particular, the temporal code which reveals a system of beliefs about time characteristic for the speakers of the Ukrainian language. The article describes the results of the reconstruction of a temporal fragment from a pre-scientific worldview. The study is based on the semasiological procedure of field modelling as well as etymological, component and syntaxeme analyses. It relies on the knowledge about word origin in the temporal group as well as about phraseological units containing words with the central seme of time and vocabulary characterized by a temporal connotation. The article elucidates two key associative vectors which guide the cognition of the temporal, namely, «time – human» and «time – environment». It provides data which reflect naïve beliefs about physics and psychology of time, coded in the Ukrainian idioms. The author examines the syntaxemic functions within phraseologisms based on temporal vocabulary. The axiological peculiarities of verbal contexts producing temporal semantics have been investigated and their utilitarian, teleological, and emotional evaluations have been described. The article offers arguments in favour of systemic connections between the temporal code of linguistic culture with the biomorphic, the objective and the somatic. The author explains that the words of the temporal group reveal deep etymological associations related to the human and the environment. In some Ukrainian idioms, the vocabulary bulk with the central seme of time is related to beliefs about mythical creatures. Due to this, such vocabulary bulk within the structure of phraseologisms mainly performs the function of the subject of action and the locative. Verbal contexts in which this vocabulary with temporal connotation is employed generate primarily negative utilitarian, teleological, and emotional evaluations. The vocabulary bulk with the semantics of time has no material denotation, and the realization of the temporal code of linguistic culture is systematically linked to the biomorphic, the somatic and the substantive.


2018 ◽  
Vol 119 (5) ◽  
pp. 1599-1607
Author(s):  
Moshe Gur

Acuity measures related to overall face size that can be perceived have not been studied quantitatively. Consequently, experimenters use a wide range of sizes (usually large) without always providing a rationale for their choices. I studied thresholds for face discrimination by presenting both long (500 ms)- and short (17, 33, 50 ms)-duration stimuli. Face width threshold for the long presentation was ~0.2°, and thresholds for the flashed stimuli ranged from ~0.3° for the 17-ms flash to ~0.23° for the 33- and 50-ms flashes. Such thresholds indicate that face stimuli used in physiological or psychophysical experiments are often too large to tap human fine spatial capabilities, and thus interpretations of such experiments should take into account face discrimination acuity. The 0.2° threshold found in this study is incompatible with the prevalent view that faces are represented by a population of specialized “face cells” because those cells do not respond to <1° stimuli and are optimally tuned to >4° faces. Also, the ability to discriminate small, high-spatial frequency flashed face stimuli is inconsistent with models suggesting that fixational drift transforms retinal spatial patterns into a temporal code. It seems therefore that the small image motions occurring during fixation do not disrupt our perception, because all relevant processing is over with before those motions can have significant effects. NEW & NOTEWORTHY Although face perception is central to human behavior, the minimally perceived face size is not known. This study shows that humans can discriminate very small (~0.2°) faces. Furthermore, even when flashed for tens of milliseconds, ~0.25° faces can be discriminated. Such fine acuity should impact modeling of physiological mechanisms of face perception. The ability to discriminate flashed faces where there is almost no eye movement indicates that eye drift is not essential for visibility.


Sign in / Sign up

Export Citation Format

Share Document