scholarly journals The Role of SprIR Quorum Sensing System in the Regulation of Serratia proteamaculans 94 Invasion

2021 ◽  
Vol 9 (10) ◽  
pp. 2082
Author(s):  
Olga Tsaplina ◽  
Inessa Khmel ◽  
Yulia Zaitseva ◽  
Sofia Khaitlina

The bacteria Serratia proteamaculans 94 have a LuxI/LuxR type QS system consisting of AHL synthase SprI and the regulatory receptor SprR. We have previously shown that inactivation of the AHL synthase sprI gene resulted in an increase in the invasive activity of S. proteamaculans correlated with an increased bacterial adhesion. In the present work, the effects of inactivation of the S. proteamaculans receptor SprR are studied. Our results show that inactivation of the receptor sprR gene leads to an increase in bacterial invasion without any increase in their adhesion. On the other hand, inactivation of the sprR gene increases the activity of the extracellular protease serralysin. Inactivation of the QS system does not affect the activity of the pore-forming toxin ShlA and prevents the ShlA activation under conditions of a limited concentration of iron ions typical of the human body. While the wild type strain shows increased invasion in the iron-depleted medium, deletion of its QS system leads to a decrease in host cell invasion, which is nevertheless similar to the level of the wild type S. proteamaculans grown in the iron-rich medium. Thus, inactivation of either of the two component of the S. proteamaculans LuxI/LuxR-type QS system leads to an increase in the invasive activity of these bacteria through different mechanisms and prevents invasion under the iron-limited conditions.

2003 ◽  
Vol 185 (1) ◽  
pp. 325-331 ◽  
Author(s):  
Melanie M. Marketon ◽  
Sarah A. Glenn ◽  
Anatol Eberhard ◽  
Juan E. González

ABSTRACT Sinorhizobium meliloti is a soil bacterium capable of invading and establishing a symbiotic relationship with alfalfa plants. This invasion process requires the synthesis, by S. meliloti, of at least one of the two symbiotically important exopolysaccharides, succinoglycan and EPS II. We have previously shown that the sinRI locus of S. meliloti encodes a quorum-sensing system that plays a role in the symbiotic process. Here we show that the sinRI locus exerts one level of control through regulation of EPS II synthesis. Disruption of the autoinducer synthase gene, sinI, abolished EPS II production as well as the expression of several genes in the exp operon that are responsible for EPS II synthesis. This phenotype was complemented by the addition of acyl homoserine lactone (AHL) extracts from the wild-type strain but not from a sinI mutant, indicating that the sinRI-specified AHLs are required for exp gene expression. This was further confirmed by the observation that synthetic palmitoleyl homoserine lactone (C16:1-HL), one of the previously identified sinRI-specified AHLs, specifically restored exp gene expression. Most importantly, the absence of symbiotically active EPS II in a sinI mutant was confirmed in plant nodulation assays, emphasizing the role of quorum sensing in symbiosis.


2008 ◽  
Vol 75 (4) ◽  
pp. 946-955 ◽  
Author(s):  
Arati V. Patankar ◽  
Juan E. Gonz�lez

ABSTRACT The Sin/ExpR quorum-sensing system of Sinorhizobium meliloti plays an important role in the symbiotic association with its host plant, Medicago sativa. The LuxR-type response regulators of the Sin system include the synthase (SinI)-associated SinR and the orphan regulator ExpR. Interestingly, the S. meliloti Rm1021 genome codes for four additional putative orphan LuxR homologs whose regulatory roles remain to be identified. These response regulators contain the characteristic domains of the LuxR family of proteins, which include an N-terminal autoinducer/response regulatory domain and a C-terminal helix-turn-helix domain. This study elucidates the regulatory role of one of the orphan LuxR-type response regulators, NesR. Through expression and phenotypic analyses, nesR was determined to affect the active methyl cycle of S. meliloti. Moreover, nesR was shown to influence nutritional and stress response activities in S. meliloti. Finally, the nesR mutant was deficient in competing with the wild-type strain for plant nodulation. Taken together, these results suggest that NesR potentially contributes to the adaptability of S. meliloti when it encounters challenges such as high osmolarity, nutrient starvation, and/or competition for nodulation, thus increasing its chances for survival in the stressful rhizosphere.


2007 ◽  
Vol 75 (9) ◽  
pp. 4519-4527 ◽  
Author(s):  
Lindsey N. Shaw ◽  
Ing-Marie Jonsson ◽  
Vineet K. Singh ◽  
Andrej Tarkowski ◽  
George C. Stewart

ABSTRACT The success of Staphylococcus aureus as a pathogen can largely be attributed to the plethora of genetic regulators encoded within its genome that temporally regulate its arsenal of virulence determinants throughout its virulence lifestyle. Arguably the most important of these is the two-component, quorum-sensing system agr. Over the last decade, the controversial presence of a second quorum-sensing system (the TRAP system) has been proposed, and it has been mooted to function as the master regulator of virulence in S. aureus by modulating agr. Mutants defective in TRAP are reported to be devoid of agr expression, lacking in hemolytic activity, essentially deficient in the secretion of virulence determinants, and avirulent in infection models. A number of research groups have questioned the validity of the TRAP findings in recent years; however, a thorough and independent analysis of its role in S. aureus physiology and pathogenesis has not been forthcoming. Therefore, we have undertaken such an analysis of the TRAP locus of S. aureus. We found that a traP mutant was equally hemolytic as the wild-type strain. Furthermore, transcriptional profiling found no alterations in the traP mutant in expression levels of agr or in expression levels of multiple agr-regulated genes (hla, sspA, and spa). Analysis of secreted and surface proteins of the traP mutant revealed no deviation in comparison to the parent. Finally, analysis conducted using a murine model of S. aureus septic arthritis revealed that, in contrast to an agr mutant, the traP mutant was just as virulent as the wild-type strain.


2002 ◽  
Vol 70 (8) ◽  
pp. 4678-4681 ◽  
Author(s):  
Eleftherios Mylonakis ◽  
Michael Engelbert ◽  
Xiang Qin ◽  
Costi D. Sifri ◽  
Barbara E. Murray ◽  
...  

ABSTRACT We used a rabbit endophthalmitis model to explore the role of fsrB, a gene required for the function of the fsr quorum-sensing system of Enterococcus faecalis, in pathogenicity. A nonpolar deletion mutant of fsrB had significantly reduced virulence compared to wild type. Complementation of mutation restored virulence. These data corroborate the role of fsrB in E. faecalis pathogenesis and suggest that the rabbit endophthalmitis model can be used to study the in vivo role of quorum sensing.


1999 ◽  
Vol 181 (20) ◽  
pp. 6264-6270 ◽  
Author(s):  
Ronda M. Anderson ◽  
Chad A. Zimprich ◽  
Lynn Rust

ABSTRACT Pseudomonas aeruginosa LasB elastase gene (lasB) transcription is controlled by the two-component quorum-sensing system of LasR, and the autoinducer, 3OC12-HSL (N-3-[oxododecanoyl]homoserine lactone). LasR and 3OC12-HSL-mediated lasBactivation requires a functional operator sequence (OP1) in thelasB promoter region. Optimal activation oflasB, however, requires a second sequence of 70% identity to OP1, named OP2, located 43 bp upstream of OP1. In this study, we used sequence substitutions and insertion mutations inlasBp-lacZ fusion plasmids to explore the role of OP2 in lasB activation. Our results demonstrate that (i) OP1 and OP2 synergistically mediate lasB activation; (ii) OP2, like OP1, responds to LasR and 3OC12-HSL; and (iii) the putative autoinducer-binding domain of LasR is not required for synergistic activation from OP1 and OP2.


2002 ◽  
Vol 184 (11) ◽  
pp. 3027-3033 ◽  
Author(s):  
Pierre Cosson ◽  
Laurence Zulianello ◽  
Olivier Join-Lambert ◽  
François Faurisson ◽  
Leigh Gebbie ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an important opportunistic pathogen that produces a variety of cell-associated and secreted virulence factors. P. aeruginosa infections are difficult to treat effectively because of the rapid emergence of antibiotic-resistant strains. In this study, we analyzed whether the amoeba Dictyostelium discoideum can be used as a simple model system to analyze the virulence of P. aeruginosa strains. The virulent wild-type strain PAO1 was shown to inhibit growth of D. discoideum. Isogenic mutants deficient in the las quorum-sensing system were almost as inhibitory as the wild type, while rhl quorum-sensing mutants permitted growth of Dictyostelium cells. Therefore, in this model system, factors controlled by the rhl quorum-sensing system were found to play a central role. Among these, rhamnolipids secreted by the wild-type strain PAO1 could induce fast lysis of D. discoideum cells. By using this simple model system, we predicted that certain antibiotic-resistant mutants of P. aeruginosa should show reduced virulence. This result was confirmed in a rat model of acute pneumonia. Thus, D. discoideum could be used as a simple nonmammalian host system to assess pathogenicity of P. aeruginosa.


2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Yongcan Sun ◽  
Yu Li ◽  
Qian Luo ◽  
Jinjing Huang ◽  
Jiakang Chen ◽  
...  

ABSTRACT LuxS/AI-2 is an important quorum sensing system which affects the growth, biofilm formation, virulence, and metabolism of bacteria. LuxS is encoded by the luxS gene, but how this gene is associated with a diverse array of physiological activities in Edwardsiella piscicida (E. piscicida) is not known. Here, we constructed an luxS gene mutant strain, the △luxS strain, to identify how LuxS/AI-2 affects pathogenicity. The results showed that LuxS was not found in the luxS gene mutant strain, and this gene deletion decreased E. piscicida growth compared to that of the wild-type strain. Meanwhile, the wild-type strain significantly increased penetration and motility in mucin compared to levels with the △luxS strain. The 50% lethal dose (LD50) of the E. piscicida △luxS strain for zebrafish was significantly higher than that of the wild-type strain, which suggested that the luxS gene deletion could attenuate the strain’s virulence. The AI-2 activities of EIB202 were 56-fold higher than those in the △luxS strain, suggesting that the luxS gene promotes AI-2 production. Transcriptome results demonstrated that between cells infected with the △luxS strain and those infected with the wild-type strain 46 genes were significantly differentially regulated, which included 34 upregulated genes and 12 downregulated genes. Among these genes, the largest number were closely related to cell immunity and signaling systems. In addition, the biofilm formation ability of EIB202 was significantly higher than that of the △luxS strain. The supernatant of EIB202 increased the biofilm formation ability of the △luxS strain, which suggested that the luxS gene and its product LuxS enhanced biofilm formation in E. piscicida. All results indicate that the LuxS/AI-2 quorum sensing system in E. piscicida promotes its pathogenicity through increasing a diverse array of physiological activities.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Liu ◽  
Xue Bai ◽  
Yan Li ◽  
Haikun Zhang ◽  
Xiaoke Hu

Abstract Background A wide variety of bacterial adaptative responses to environmental conditions are mediated by signal transduction pathways. Two-component signal transduction systems are one of the predominant means used by bacteria to sense the signals of the host plant and adjust their interaction behaviour. A total of seven open reading frames have been identified as putative two-component response regulators in the gram-negative nitrogen-fixing bacteria Azorhizobium caulinodans ORS571. However, the biological functions of these response regulators in the symbiotic interactions between A. caulinodans ORS571 and the host plant Sesbania rostrata have not been elucidated to date. Results In this study, we identified and investigated a two-component response regulator, AcfR, with a phosphorylatable N-terminal REC (receiver) domain and a C-terminal HTH (helix-turn-helix) LuxR DNA-binding domain in A. caulinodans ORS571. Phylogenetic analysis showed that AcfR possessed close evolutionary relationships with NarL/FixJ family regulators. In addition, six histidine kinases containing HATPase_c and HisKA domains were predicted to interact with AcfR. Furthermore, the biological function of AcfR in free-living and symbiotic conditions was elucidated by comparing the wild-type strain and the ΔacfR mutant strain. In the free-living state, the cell motility behaviour and exopolysaccharide production of the ΔacfR mutant were significantly reduced compared to those of the wild-type strain. In the symbiotic state, the ΔacfR mutant showed a competitive nodule defect on the stems and roots of the host plant, suggesting that AcfR can provide A. caulinodans with an effective competitive ability for symbiotic nodulation. Conclusions Our results showed that AcfR, as a response regulator, regulates numerous phenotypes of A. caulinodans under the free-living conditions and in symbiosis with the host plant. The results of this study help to elucidate the involvement of a REC + HTH_LuxR two-component response regulator in the Rhizobium-host plant interaction.


Author(s):  
Chang-Hun Shin ◽  
Hang Soo Cho ◽  
Hyung-Jin Won ◽  
Ho Jeong Kwon ◽  
Chan-Wha Kim ◽  
...  

Abstract Clavulanic acid (CA) produced by Streptomyces clavuligerus is a clinically important β-lactamase inhibitor. It is known that glycerol utilization can significantly improve cell growth and CA production of S. clavuligerus. We found that the industrial CA-producing S. clavuligerus strain OR generated by random mutagenesis consumes less glycerol than the wild-type strain; we then developed a mutant strain in which the glycerol utilization operon is overexpressed, as compared to the parent OR strain, through iterative random mutagenesis and reporter-guided selection. The CA production of the resulting S. clavuligerus ORUN strain was increased by approximately 31.3 per cent (5.21 ± 0.26 g/L) in a flask culture and 17.4 per cent (6.11 ± 0.36 g/L) in a fermenter culture, as compared to that of the starting OR strain. These results confirmed the important role of glycerol utilization in CA production and demonstrated that reporter-guided mutant selection is an efficient method for further improvement of randomly mutagenized industrial strains.


2021 ◽  
Author(s):  
Shahnaz Haque

Enterohemorrhagic Escherichia coli (EHEC) 0157:H7 is a food-borne pathogen that causes hemolytic uremic syndrome and hemorrhagic colitis. The mechanisms underlying the adhesion of EHEC 0157:H7 to intestinal epithelial cells are not well understood. Like other food-borne pathogens, ECEC 0157:H7 must survive the acid stress of the gastric juice in the stomach and short chain fatty acid in the intestine in order to colonize the large intestine. We have found that acid stress and short chain fatty acid stress significantly enhance host-adhesion of EHEC 0157:H7 and also upregulates expression of EHEC fimbrial genes, lpfA1, lpfA2 and yagZ, as demonstrated by our DNA microarray. We now report that disruption of the yagZ (also known as the E. coli common pilus A) gene results in loss of the acid-induced and short chain fatty acid-induced adhesion increase seen for the wild type strain. When the yagZ mutant is complemented with yagZ, the sress-induced and short chain fatty acid-induced adhesion increase seen for the wild type strain. When the yagZ mutant is complemented with yagZ, the stress-induced adhesion pehnotype is restored, confirming the role of yagZ in the acid as well as short chain fatty acid induced adhesion to HEp-2 cells. On the other hand, neither disruption in the long polar fimbria genes lpfA1 or lpfA2 in the wild type showed any effect in adherence to HEp-2 cells; rather displaying a hyperadherant phenotype to HEp-2 cells after acid-induced or short chain fatty acid-induced stress. The results also indicate that acid or short chain fatty acid stress, which is a part of the host's natural defense mechanism against pathogens, may regulate virulence factors resulting in enhanced bacteria-host attachment during colonization in the human or bovine host.


Sign in / Sign up

Export Citation Format

Share Document