nitride formation
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 19)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Yanan Lv ◽  
Dong Chen

The effects of parameters on nanoscale titanium nitride during the formation process in ferrite were studied via the molecular dynamics (MD) simulation. The formation of titanium nitride was executed by employing a dislocation-motivated formation model in which the atomic diffusion has a significant contribution. The roles of N/Ti atom ratio, temperature and matrix defect were identified and the according nitride formation property was analyzed.


Author(s):  
В.О. Попов ◽  
В.Н. Комов ◽  
Е.М. Попенко ◽  
А.В. Сергиенко

Данная статья посвящена исследованию влияния пористости прессованных таблеток из сверхтонкого порошка алюминия (СТП Al). Определен механизм горения, протекающий в две стадии: первая, медленная, включающая в себя как «кольцевое» горение боковой поверхности, так и параллельное горение концентрическими слоями, вторая стадия объемная, сопровождающаяся резким самопроизвольным увеличением температуры горения и интенсивности свечения. Показано, что увеличение плотности упаковки СТП Al позволяет замедлить процесс окисления алюминия более чем в два раза. Это обусловлено снижением газопроницаемости таблетки и затруднением доступа воздуха вглубь образца. Повышение пористости материала позволяет регулировать процесс нитридообразования за счёт увеличения содержания азота в продуктах при фильтрационном механизме горения, что открывает возможности получения тугоплавких материалов. This article is devoted to the study of the effect of porosity of compressed tablets from ultrafine aluminum powder (STP Al). The combustion mechanism was determined, which proceeds in two stages: the first, slow, which includes both "ring" combustion of the side surface and parallel combustion with concentric layers, the second stage is volumetric, accompanied by a sharp spontaneous increase in the combustion temperature and glow intensity. It has been shown that an increase in the packing density of HFC Al makes it possible to slow down the process of aluminum oxidation by more than two times. This is due to a decrease in the gas permeability of the tablet and the difficulty of air access deep into the sample. An increase in the porosity of the material makes it possible to regulate the process of nitride formation by increasing the nitrogen content in the products during the filtration mechanism of combustion, which opens up the possibility of obtaining refractory materials.


Author(s):  
Stefan Kante ◽  
Andreas Leineweber

AbstractA Fe–3wt pctSi alloy was gas nitrided to study the effect of Si on the Fe nitride formation. Both ε-Fe3N1+x and γ′-Fe4N were observed at nitriding conditions only allowing to form single-phase γ′ layers in pure α-Fe. During short nitriding times, ε and γ′ simultaneously grow in contact with Si-supersaturated α-Fe(Si). Both nitrides almost invariably exhibit crystallographic orientation relationships with α-Fe, which are indicative of a partially displacive transformation of α-Fe being involved in the initial formation of ε and γ′. Due to Si constraining the Fe nitride growth, such transformation mechanism becomes highly important to the nitride layer formation, causing α-Fe-grain-dependent variations in the nitride layer morphology and thickness, as well as microstructure refinement within the nitride layer. After prolonged nitriding, α-Fe is depleted in Si due the pronounced precipitation of Si-rich nitride in α-Fe. The growth mode of the compound layer changes, now advancing by conventional planar-type growth. During nitriding times of 1 to 48 hours, ε exists in contact with the NH3/H2-containing nitriding atmosphere at a nitriding potential of 1 atm−1/2 and 540 °C, only allowing for the formation of γ′ in pure Fe, indicating that Si affects the thermodynamic stability ranges of ε and γ′.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1072
Author(s):  
Petra Pfizenmaier ◽  
Anke Silvia Ulrich ◽  
Mathias C. Galetz ◽  
Uwe Glatzel

The tensile creep behavior of Cr-Si alloys with Cr ≥ 91 at.% was investigated in air at 980 °C with a constant load of 50–100 MPa. Additionally, the influence of substitutional alloying additions of 2 at.% Ge and Mo, leading to ternary alloys was studied. The addition of Ge or Mo results in an improvement in creep strength, with the highest strength achieved with addition of Mo. For longer creep exposure times a strong effect is observed, because of severe nitrogen uptake from the air, depending on alloy composition. Based on the results a novel mechanism for the impact of chromium nitride formation on the creep behavior is proposed.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1141
Author(s):  
Stefan Ručman ◽  
Chatdanai Boonruang ◽  
Pisith Singjai

The effects of a weak magnetic field on chemical reactions are still not well understood. In our research, we used a sparking discharge process to ionize and atomize different metal wires in ambient air under usual atmospheric conditions, with and without the presence of a magnetic field. Products were collected on a glass substrate and additionally characterized for the presence of nitrogen or nitride bonding with XPS. All samples sparked with no magnetic field provided an evidence of nitride formation. Additional characterization and comparison of samples prepared inside and outside a magnetic field was performed using FTIR and collected in deionized (DI) water to investigate the influence on conductivity and pH. When the magnetic field was present during sparking discharge, a higher concentration of nanoparticles was produced.


Author(s):  
Amir Baghdadchi ◽  
Vahid A. Hosseini ◽  
Kjell Hurtig ◽  
Leif Karlsson

Abstract Avoiding low austenite fractions and nitride formation are major challenges in laser welding of duplex stainless steels (DSS). The present research aims at investigating efficient means of promoting austenite formation during autogenous laser welding of DSS without sacrificing productivity. In this study, effects of shielding gas and laser reheating were investigated in welding of 1.5-mm-thick FDX 27 (UNS S82031) DSS. Four conditions were investigated: Ar-shielded welding, N2-shielded welding, Ar-shielded welding followed by Ar-shielded laser reheating, and N2-shielded welding followed by N2-shielded laser reheating. Optical microscopy, thermodynamic calculations, and Gleeble heat treatment were performed to study the evolution of microstructure and chemical composition. The austenite fraction was 22% for Ar-shielded and 39% for N2-shielded as-welded conditions. Interestingly, laser reheating did not significantly affect the austenite fraction for Ar shielding, while the austenite fraction increased to 57% for N2-shielding. The amount of nitrides was lower in N2-shielded samples compared to in Ar-shielded samples. The same trends were also observed in the heat-affected zone. The nitrogen content of weld metals, evaluated from calculated equilibrium phase diagrams and austenite fractions after Gleeble equilibrating heat treatments at 1100 °C, was 0.16% for N2-shielded and 0.11% for Ar-shielded welds, confirming the importance of nitrogen for promoting the austenite formation during welding and especially reheating. Finally, it is recommended that combining welding with pure nitrogen as shielding gas and a laser reheating pass can significantly improve austenite formation and reduce nitride formation in DSS laser welds.


2020 ◽  
Vol 2020 (6) ◽  
pp. 3-11
Author(s):  
Larisa Petrova ◽  
Alexandra Sergeeva

A problem of austenitic steel surface strengthening is considered. There are shown advantages and disadvantages of common low-temperature and high-temperature gas nitride hardening connected with the prevention of chromium nitride formation on the surface of products. The estimate of nitride steel phase structures on the basis of thermo-dynamic models and an experimental definition of parameters for obtaining an austenite surface alloyed with nitrogen are carried out.


2020 ◽  
Vol 60 (4) ◽  
pp. 640-648 ◽  
Author(s):  
Min-Kyu Paek ◽  
Hae-Sol Son ◽  
Jung-Mock Jang ◽  
Jong-Jin Pak

Sign in / Sign up

Export Citation Format

Share Document