scholarly journals High-resolution at 3T for in vivo derivative NMR spectroscopy in medical diagnostics of ovarian tumor: exact quantification by shape estimations

Author(s):  
Dževad Belkić ◽  
Karen Belkić

AbstractTime signals are measured experimentally throughout sciences, technologies and industries. Of particular interest here is the focus on time signals encoded by means of magnetic resonance spectroscopy (MRS). The great majority of generic time signals are equivalent to auto-correlation functions from quantum physics. Therefore, a quantum-mechanical theory of measurements of encoded MRS time signals is achievable by performing quantum-mechanical spectral analysis. When time signals are measured, such an analysis becomes an inverse problem (harmonic inversion) with the task of reconstruction of the fundamental frequencies and the corresponding amplitudes. These complex-valued nodal parameters are the building blocks of the associated resonances in the frequency spectrum. Customarily, the MRS literature reports on fitting some ad hoc mathematical expressions to a set of resonances in a Fourier spectrum to extract their positions, widths and heights. Instead, an alternative would be to diagonalize the so-called data matrix with the signal points as its elements and to extract the resonance parameters without varying any adjusting, free constants as these would be absent altogether. Such a data matrix (the Hankel matrix) is from the category of the evolution matrix in the Schrödinger picture of quantum mechanics. Therefore, the spectrum of this matrix, i.e. the eigenvalues and the corresponding amplitudes, as the Cauchy residues (that are the squared projections of the full wave functions of the system onto the initial state) are equivalent to the sought resonance parameters, just mentioned. The lineshape profile of the frequency-dependent quantum-mechanical spectral envelope is given by the Heaviside partial fraction sum. Each term (i.e. every partial fraction) in this summation represents a component lineshape to be assigned to a given molecule (metabolite) in the tissue scanned by MRS. This is far reaching, since such a procedure allows reconstruction of the most basic quantum-mechanical entities, e.g. the total wave function of the investigated system and its ’Hamiltonian’ (a generator of the dynamics), directly from the encoded time signals. Since quantum mechanics operates with abstract objects, it can be applied to any system including living species. For example, time signals measured from the brain of a human being can be analyzed along these lines, as has actually been done e.g. by own our research. In this way, one can arrive at a quantum-mechanical description of the dynamics of vital organs of the patient by retrieving the interactions as the most important parts of various pathways of the tissue functions and metabolism. Of practical importance is that the outlined quantum-mechanical prediction of the frequency spectrum coincides with the Padé approximant, which is in signal processing alternatively called the fast Padé transform (FPT) for nonderivative estimations. Further, there is a novelty called the derivative fast Padé transform (dFPT). The FPT and dFPT passed the test of time with three fundamentally different time signals, synthesized (noise-free, noise-contaminated) as well as encoded from phantoms and from patients. Such systematics are necessary as they permit robust and reliable benchmarkings of the theory in a manner which can build confidence of the physician, while interpreting the patient’s data and making the appropriate diagnosis. In the present study, we pursue further this road paved earlier by applying the FPT and dFPT (both as shape and parameter estimators) to time signals encoded by in vivo proton MRS from an ovarian tumor. A clinical 3T scanner is used for encoding at a short echo time (30 ms) at which most resonances have not reached yet their decay mode and, as such, could be detected to assist with diagnostics. We have two goals, mathematical and clinical. First, we want to find out whether particularly the nonparametric dFPT, as a shape estimator, can accurately quantify. Secondly, we want to determine whether this processor can provide reliable information for evaluating an ovarian tumor. From the obtained results, it follows that both goals have met with success. The nonparametric dFPT, from its onset as a shape estimator, transformed itself into a parameter estimator. Its quantification capabilities are confirmed by reproducing the components reconstructed by the parametric dFPT. Thereby, fully quantified information is provided to such a precise extent that a large number of sharp resonances (more than 160) appear as being well isolated and, thus, assignable to the known metabolites with no ambiguities. Importantly, some of these metabolites are recognized cancer biomarkers (e.g. choline, phosphocholine, lactate). Also, broader resonances assigned to macromolecules are quantifiable by a sequential estimation (after subtracting the formerly quantified sharp resonances and processing the residual spectrum by the nonparametric dFPT). This is essential too as the presence of macromolecules in nonoderivative envelopes deceptively exaggerates the intensities of sharper resonances and, hence, can be misleading for diagnostics. The dFPT, as the quantification-equipped shape estimator, rules out such possibilities as wider resonances can be separately quantified. This, in turn, helps make adequate assessment of the true yield from sharp resonances assigned to metabolites of recognized diagnostic relevance.

2019 ◽  
Author(s):  
Joshua Horton ◽  
Alice Allen ◽  
Daniel Cole

<div><div><div><p>The quantum mechanical bespoke (QUBE) force field is used to retrospectively calculate the relative binding free energy of a series of 17 flexible inhibitors of p38α MAP kinase. The size and flexibility of the chosen molecules represent a stringent test of the derivation of force field parameters from quantum mechanics, and enhanced sampling is required to reduce the dependence of the results on the starting structure. Competitive accuracy with a widely-used biological force field is achieved, indicating that quantum mechanics derived force fields are approaching the accuracy required to provide guidance in prospective drug discovery campaigns.</p></div></div></div>


1998 ◽  
Vol 13 (05) ◽  
pp. 347-351 ◽  
Author(s):  
MURAT ÖZER

We attempt to treat the very early Universe according to quantum mechanics. Identifying the scale factor of the Universe with the width of the wave packet associated with it, we show that there cannot be an initial singularity and that the Universe expands. Invoking the correspondence principle, we obtain the scale factor of the Universe and demonstrate that the causality problem of the standard model is solved.


2011 ◽  
Vol 20 (05) ◽  
pp. 729-743 ◽  
Author(s):  
JOÃO PAULO M. PITELLI ◽  
PATRICIO S. LETELIER

We review the mathematical framework necessary to understand the physical content of quantum singularities in static spacetimes. We present many examples of classical singular spacetimes and study their singularities by using wave packets satisfying Klein–Gordon and Dirac equations. We show that in many cases the classical singularities are excluded when tested by quantum particles but unfortunately there are other cases where the singularities remain from the quantum mechanical point of view. When it is possible we also find, for spacetimes where quantum mechanics does not exclude the singularities, the boundary conditions necessary to turn the spatial portion of the wave operator to be self-adjoint and emphasize their importance to the interpretation of quantum singularities.


General formulas for estimating the errors in quantum-mechanical calculations are given in the formalism of density matrices. Some properties of the traces of matrices are used to simplify the estimating and to indicate a way of obtaining a better approximation. It is shown that the simultaneous correction of all the equations to be fulfilled leads in most cases to a faster convergence than the exact fulfilment of some of the equations and approximating stepwise to some of the others. The corrective formulas contain only direct operations of the matrices occurring and so they are advantageous in computer applications. In the last section a ‘subjective error’ definition is given and by taking into account the weight of the errors of the several equations a faster convergence and a single error quantity is obtained. Some special applications of the method will be published later.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Frank Wilczek

Quantum mechanics is nearly one hundred years old; and yet the challenge it presents to the imagination is so great that scientists are still coming to terms with some of its most basic implications. Theoretical insights and recent experimental results in anyon physics are leading physicists to revise and expand their ideas about what quantum-mechanical particles are and how they behave.


Author(s):  
Anurag Chapagain

Abstract: It is a well-known fact in physics that classical mechanics describes the macro-world, and quantum mechanics describes the atomic and sub-atomic world. However, principles of quantum mechanics, such as Heisenberg’s Uncertainty Principle, can create visible real-life effects. One of the most commonly known of those effects is the stability problem, whereby a one-dimensional point base object in a gravity environment cannot remain stable beyond a time frame. This paper expands the stability question from 1- dimensional rod to 2-dimensional highly symmetrical structures, such as an even-sided polygon. Using principles of classical mechanics, and Heisenberg’s uncertainty principle, a stability equation is derived. The stability problem is discussed both quantitatively as well as qualitatively. Using the graphical analysis of the result, the relation between stability time and the number of sides of polygon is determined. In an environment with gravity forces only existing, it is determined that stability increases with the number of sides of a polygon. Using the equation to find results for circles, it was found that a circle has the highest degree of stability. These results and the numerical calculation can be utilized for architectural purposes and high-precision experiments. The result is also helpful for minimizing the perception that quantum mechanical effects have no visible effects other than in the atomic, and subatomic world. Keywords: Quantum mechanics, Heisenberg Uncertainty principle, degree of stability, polygon, the highest degree of stability


2018 ◽  
Vol 4 (1) ◽  
pp. 47-55
Author(s):  
Timothy Brian Huber

The harmonic oscillator is a quantum mechanical system that represents one of the most basic potentials. In order to understand the behavior of a particle within this system, the time-independent Schrödinger equation was solved; in other words, its eigenfunctions and eigenvalues were found. The first goal of this study was to construct a family of single parameter potentials and corresponding eigenfunctions with a spectrum similar to that of the harmonic oscillator. This task was achieved by means of supersymmetric quantum mechanics, which utilizes an intertwining operator that relates a known Hamiltonian with another whose potential is to be built. Secondly, a generalization of the technique was used to work with the time-dependent Schrödinger equation to construct new potentials and corresponding solutions.


Author(s):  
Alireza Jamali

It is known since Madelung that the Schr&ouml;dinger equation can be thought of as governing the evolution of an incompressible fluid, but the current theory fails to mathematically express this incompressibility in terms of the wavefunction without facing problem. In this paper after showing that the current definition of quantum-mechanical momentum as a linear operator is neither the most general nor a necessary result of the de Broglie hypothesis, a new definition is proposed that can yield both a meaningful mathematical condition for the incompressibility of the Madelung fluid, and nonlinear generalisations of Schr&ouml;dinger and Klein-Gordon equations. The derived equations satisfy all conditions that are expected from a proper generalisation: simplification to their linear counterparts by a well-defined dynamical condition; Galilean and Lorentz invariance (respectively); and signifying only rays in the Hilbert space.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345013 ◽  
Author(s):  
MILTON A. DA SILVA ◽  
ROBERTO M. SERRA ◽  
LUCAS C. CÉLERI

We analyze the wave function collapse as seen by two distinct observers (with identical detectors) in relative motion. Imposing that the measurement process demands information transfer from the system to the detectors, we note that although different observers will acquire different amount of information from their measurements due to correlations between spin and momentum variables, all of them will agree about the orthogonality of the outcomes, as defined by their own reference frame. So, in this sense, such a quantum mechanical postulate is observer invariant, however the effective efficiency of the measurement process differs for each observer.


Sign in / Sign up

Export Citation Format

Share Document