scholarly journals Basic Characterization of Plant Actin Depolymerizing Factors: A Simplified, Streamlined Guide

2019 ◽  
Author(s):  
Sonali Sengupta ◽  
Kanniah Rajasekaran ◽  
Niranjan Baisakh

Abstract Actin depolymerizing factors (ADFs) are small monomeric actin-binding proteins that alter the oligomeric state of cellular actin. Members of the ADF family can bind both the G-actin and F-actin in plants, and their functions are regulated by cellular pH, ionic strength and availability of other binding partners. Actin depolymerization activity is reportedly essential for plant viability. By binding to the ADP-bound form of actin, ADFs severe actin filaments and thereby provide more barbed filament ends for polymerization. They also increase the rate of dissociation of F-actin monomer by changing the helical twist of the actin filament. These two activities together make ADF the major regulator of actin dynamics in plant cell. Therefore, it is essential to measure the binding and depolymerization activity of the plant ADFs. Here, we present a simplified, streamlined step-by-step protocol to quickly measure these important functions of the ADF proteins in vitro.

2019 ◽  
Author(s):  
Sonali Sengupta ◽  
Kanniah Rajasekaran ◽  
Niranjan Baisakh

Abstract Actin depolymerizing factors (ADFs) are small monomeric actin-binding proteins that alter the oligomeric state of cellular actin. Members of the ADF family can bind both the G-actin and F-actin in plants, and their functions are regulated by cellular pH, ionic strength and availability of other binding partners. Actin depolymerization activity is reportedly essential for plant viability. By binding to the ADP-bound form of actin, ADFs severe actin filaments and thereby provide more barbed filament ends for polymerization. They also increase the rate of dissociation of F-actin monomer by changing the helical twist of the actin filament. These two activities together make ADF the major regulator of actin dynamics in plant cell. Therefore, it is essential to measure the binding and depolymerization activity of the plant ADFs. Here, we present a simplified, streamlined step-by-step protocol to quickly measure these important functions of the ADF proteins in vitro.


2005 ◽  
Vol 16 (2) ◽  
pp. 649-664 ◽  
Author(s):  
Pirta Hotulainen ◽  
Eija Paunola ◽  
Maria K. Vartiainen ◽  
Pekka Lappalainen

Actin-depolymerizing factor (ADF)/cofilins are small actin-binding proteins found in all eukaryotes. In vitro, ADF/cofilins promote actin dynamics by depolymerizing and severing actin filaments. However, whether ADF/cofilins contribute to actin dynamics in cells by disassembling “old” actin filaments or by promoting actin filament assembly through their severing activity is a matter of controversy. Analysis of mammalian ADF/cofilins is further complicated by the presence of multiple isoforms, which may contribute to actin dynamics by different mechanisms. We show that two isoforms, ADF and cofilin-1, are expressed in mouse NIH 3T3, B16F1, and Neuro 2A cells. Depleting cofilin-1 and/or ADF by siRNA leads to an accumulation of F-actin and to an increase in cell size. Cofilin-1 and ADF seem to play overlapping roles in cells, because the knockdown phenotype of either protein could be rescued by overexpression of the other one. Cofilin-1 and ADF knockdown cells also had defects in cell motility and cytokinesis, and these defects were most pronounced when both ADF and cofilin-1 were depleted. Fluorescence recovery after photobleaching analysis and studies with an actin monomer-sequestering drug, latrunculin-A, demonstrated that these phenotypes arose from diminished actin filament depolymerization rates. These data suggest that mammalian ADF and cofilin-1 promote cytoskeletal dynamics by depolymerizing actin filaments and that this activity is critical for several processes such as cytokinesis and cell motility.


2008 ◽  
Vol 182 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Ville O. Paavilainen ◽  
Esko Oksanen ◽  
Adrian Goldman ◽  
Pekka Lappalainen

Actin dynamics provide the driving force for many cellular processes including motility and endocytosis. Among the central cytoskeletal regulators are actin-depolymerizing factor (ADF)/cofilin, which depolymerizes actin filaments, and twinfilin, which sequesters actin monomers and caps filament barbed ends. Both interact with actin through an ADF homology (ADF-H) domain, which is also found in several other actin-binding proteins. However, in the absence of an atomic structure for the ADF-H domain in complex with actin, the mechanism by which these proteins interact with actin has remained unknown. Here, we present the crystal structure of twinfilin's C-terminal ADF-H domain in complex with an actin monomer. This domain binds between actin subdomains 1 and 3 through an interface that is conserved among ADF-H domain proteins. Based on this structure, we suggest a mechanism by which ADF/cofilin and twinfilin inhibit nucleotide exchange of actin monomers and present a model for how ADF/cofilin induces filament depolymerization by weakening intrafilament interactions.


2000 ◽  
Vol 20 (5) ◽  
pp. 1772-1783 ◽  
Author(s):  
Maria Vartiainen ◽  
Pauli J. Ojala ◽  
Petri Auvinen ◽  
Johan Peränen ◽  
Pekka Lappalainen

ABSTRACT In our database searches, we have identified mammalian homologues of yeast actin-binding protein, twinfilin. Previous studies suggested that these mammalian proteins were tyrosine kinases, and therefore they were named A6 protein tyrosine kinase. In contrast to these earlier studies, we did not find any tyrosine kinase activity in our recombinant protein. However, biochemical analysis showed that mouse A6/twinfilin forms a complex with actin monomer and prevents actin filament assembly in vitro. A6/twinfilin mRNA is expressed in most adult tissues but not in skeletal muscle and spleen. In mouse cells, A6/twinfilin protein is concentrated to the areas at the cell cortex which overlap with G-actin-rich actin structures. A6/twinfilin also colocalizes with the activated forms of small GTPases Rac1 and Cdc42 to membrane ruffles and to cell-cell contacts, respectively. Furthermore, expression of the activated Rac1(V12) in NIH 3T3 cells leads to an increased A6/twinfilin localization to nucleus and cell cortex, whereas a dominant negative form of Rac1(V12,N17) induces A6/twinfilin localization to cytoplasm. Taken together, these studies show that mouse A6/twinfilin is an actin monomer-binding protein whose localization to cortical G-actin-rich structures may be regulated by the small GTPase Rac1.


2002 ◽  
Vol 115 (5) ◽  
pp. 881-886 ◽  
Author(s):  
Sandra Palmgren ◽  
Maria Vartiainen ◽  
Pekka Lappalainen

Twinfilin is a ubiquitous actin-monomer-binding protein that is composed of two ADF-homology domains. It forms a 1:1 complex with ADP-actin-monomers,inhibits nucleotide exchange on actin monomers and prevents assembly of the monomer into filaments. The two ADF-H domains in twinfilin probably have 3D structures similar to those of the ADF/cofilin proteins and overlapping actin-binding sites. Twinfilin also interacts with PtdIns(4,5)P2, which inhibits its actin-monomer-sequestering activity in vitro. Mutations in the twinfilin gene result in defects in the bipolar budding pattern in S. cerevisiae and in a rough eye phenotype and aberrant bristle morphology in Drosophila melanogaster. These phenotypes are caused by the uncontrolled polymerization of actin filaments in the absence of twinfilin. Studies on budding yeast suggest that twinfilin contributes to actin filament turnover by localizing actin monomers, in their `inactive'ADP-form, to the sites of rapid filament assembly. This is mediated through direct interactions between twinfilin and capping protein. Therefore,twinfilin might serve as a link between rapid actin filament depolymerization and assembly in cells.


2020 ◽  
Vol 295 (11) ◽  
pp. 3506-3517 ◽  
Author(s):  
Jordan M. Mancl ◽  
Cristian Suarez ◽  
Wenguang G. Liang ◽  
David R. Kovar ◽  
Wei-Jen Tang

Pseudomonas aeruginosa uses a type III secretion system (T3SS) to inject cytotoxic effector proteins into host cells. The promiscuous nucleotidyl cyclase, exoenzyme Y (ExoY), is one of the most common effectors found in clinical P. aeruginosa isolates. Recent studies have revealed that the nucleotidyl cyclase activity of ExoY is stimulated by actin filaments (F-actin) and that ExoY alters actin cytoskeleton dynamics in vitro, via an unknown mechanism. The actin cytoskeleton plays an important role in numerous key biological processes and is targeted by many pathogens to gain competitive advantages. We utilized total internal reflection fluorescence microscopy, bulk actin assays, and EM to investigate how ExoY impacts actin dynamics. We found that ExoY can directly bundle actin filaments with high affinity, comparable with eukaryotic F-actin–bundling proteins, such as fimbrin. Of note, ExoY enzymatic activity was not required for F-actin bundling. Bundling is known to require multiple actin-binding sites, yet small-angle X-ray scattering experiments revealed that ExoY is a monomer in solution, and previous data suggested that ExoY possesses only one actin-binding site. We therefore hypothesized that ExoY oligomerizes in response to F-actin binding and have used the ExoY structure to construct a dimer-based structural model for the ExoY–F-actin complex. Subsequent mutational analyses suggested that the ExoY oligomerization interface plays a crucial role in mediating F-actin bundling. Our results indicate that ExoY represents a new class of actin-binding proteins that modulate the actin cytoskeleton both directly, via F-actin bundling, and indirectly, via actin-activated nucleotidyl cyclase activity.


2004 ◽  
Vol 36 (9) ◽  
pp. 637-643
Author(s):  
Jun Zhang ◽  
Yuan-Liang Wang ◽  
Xin-Yong Chen ◽  
Chuang-Long He ◽  
Chao Cheng ◽  
...  

Abstract With the atomic force microscope (AFM), we preliminarily investigated the large-scale structure of actin filaments formed in low concentration protein solution (5 μg/ml) via self-organization without the presence of any F-actin dynamic interfering factors (such as phalloidin) in vitro. It was found that the G-actin could be polymerized into ordered filamentous structures with different diameter from the slimmest filament of single F-actin to giant filament in tree-like branched aggregates. The observed polymerized actin filaments, to which our most intense attention was attracted, was discretely distributed and showed obvious polymorphism distinctly different from those in the presence of phalloidin or actin binding proteins (fimbrin, gelsolin, etc.) in previous experiments. Latter structures were mainly composed of single F-actin and/or multifilaments clearly consisting of several single F-actin. The experimental results clearly demonstrated that non-interference with the F-actin intrinsic dynamics in self-organizing could lead to the polymorphism of actin filamentous structures, and further analysis implied that the disturbance of normal F-actin dynamics by many factors could prevent the emergence of structural polymorphism, more often than not, give rise to formation of specific structures instead and different interference would bring about various particular structures under certain conditions.


2007 ◽  
Vol 18 (3) ◽  
pp. 827-838 ◽  
Author(s):  
Céline Revenu ◽  
Matthieu Courtois ◽  
Alphée Michelot ◽  
Cécile Sykes ◽  
Daniel Louvard ◽  
...  

Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.


Sign in / Sign up

Export Citation Format

Share Document