free surface velocity
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
K. Jakubowska ◽  
D. Mancelli ◽  
R. Benocci ◽  
J. Trela ◽  
I. Errea ◽  
...  

Abstract In this work we present experimental results on the behavior of diamond at megabar pressure. The experiment was performed using the PHELIX facility at GSI in Germany to launch a planar shock into solid multi-layered diamond samples. The target design allows shock velocity in diamond and in two metal layers to be measured as well as the free surface velocity after shock breakout. As diagnostics, we used two velocity interferometry systems for any reflector (VISARs). Our measurements show that for the pressures obtained in diamond (between 3 and 9 Mbar), the propagation of the shock induces a reflecting state of the material. Finally, the experimental results are compared with hydrodynamical simulations in which we used different equations of state, showing compatibility with dedicated SESAME tables for diamond.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4448
Author(s):  
Marvin A. Zocher ◽  
Tariq D. Aslam

A series of experiments involving the detonation of PBX 9501 encased in a copper cylinder are modeled with the objective of evaluating a proposed set of phenomenological parameters for the Wescott–Stewart–Davis reactive burn model. The numerical analysis is conducted using the Los Alamos continuum mechanics code FLAG. Numerical considerations pertaining to various aspects of modeling the experiments using FLAG are discussed. It is shown that use of the proposed set of phenomenological parameters results in predictions of free-surface velocity that match empirically measured velocities reasonably well.


2020 ◽  
Vol 10 (15) ◽  
pp. 5390
Author(s):  
Jun Yang ◽  
Junhua He ◽  
Dezhi Zhang ◽  
Haibin Xu ◽  
Guokai Shi ◽  
...  

The Hopkinson pressure bar is widely used to measure the reflected pressure of blast waves over a short distance. However, dispersion effects will occur when the elastic stress waves propagate in the pressure bar due to lateral inertia, and there will be errors between the signals obtained from the sensors and the actual loading. For the free surface velocity measured in our system, we developed a local phase-amplitude joint correction method to convert the measured velocity into the average reflected pressure of a shock wave at the impact end of the bar, considering factors such as propagation modes of the elastic wave, the frequency components’ time of arrival, velocity variation over the bar axis, and the stress–velocity relationship. Firstly, the Pochhammer–Chree frequency equation is calculated numerically, and the first to fourth orders of phase velocity, group velocity, normalized frequency, and propagation time curves of elastic wave propagation in 35CrMnSiA steel are obtained. Secondly, the phase and amplitude correction formulas for calculating average reflected pressure from center velocity are derived based on the propagation mode of the axial elastic wave in the pressure bar by analyzing the time-frequency combined spectrum obtained by short-time Fourier transform. Thirdly, a local phase-amplitude joint correction algorithm based on propagation mode is proposed in detail. The experimental tests and data analyses are carried out for eight sets of pressure bar. The results show that this method can identify the propagation mode of elastic waves in the bar intuitively and clearly. The first three orders of propagation modes are stimulated in the bar 04, while only the first order of propagation is stimulated in the other eight bars. The local phase-amplitude joint correction algorithm can avoid correcting the component of the non-axial elastic wave. The rising edge of the average stress curve on the impact surface of bar 01 and bar 04 is corrected from 4.13 μs and 4.09 μs to 2.70 μs, respectively.


2020 ◽  
pp. 204141962091770
Author(s):  
PLN Fernando ◽  
Damith Mohotti ◽  
Alex Remennikov ◽  
PJ Hazell ◽  
H Wang ◽  
...  

This article investigates the performance of an impedance-graded multi-metallic system. Material combinations of steel–titanium, steel–aluminium and steel–titanium–aluminium are compared against a monolithic steel configuration. The experiments were carried out using a single-stage gas gun, where the target specimens consisted of these material configurations. The targets were subjected to the impact of an aluminium flyer at a velocity of 180 m/s, where elastic waves were expected to propagate through the target. The free surface velocity of the final material in the target was measured and these readings were used to quantify the stresses in the materials. These stress results were compared with the output from two-dimensional axisymmetric numerical models and theoretical equations. The findings of this study indicated that a target configuration with gradual impedance reduction could minimize the magnitudes of both compressive and tensile stresses in the materials, where the latter is critical towards preventing debonding in a multi-material system.


2019 ◽  
Vol 9 (24) ◽  
pp. 5326
Author(s):  
Xiaosheng Wang ◽  
Shangtuo Qian ◽  
Hongxun Chen

A storage tunnel system is the critical infrastructure of urban drainage systems, in which the rapid filling of water and release of trapped air can lead to the “geyser” phenomenon. This may cause serious damage, threatening both system operation and personal safety. In this paper, a detailed experimental study was carried out based on synchronous recorded video images and digital image processing technology. According to experimental observations, gas-flow geysers and surge-type geysers were analyzed deeply. The former is caused by high-speed gas flow and is accompanied by a pressure drop; the latter is caused by surge pressure and is accompanied by a pressure increase. The free surface velocity of the gas-flow geyser is mainly affected by the external pressure, the air volume, the diameter of the shaft, and the height of the water column, and the geyser phenomenon cannot occur when the air column is mainly dominated by buoyancy. Based on dimensional analysis and data fitting, this paper presents the empirical formula for the free surface velocity and the interface net velocity and puts forward the critical occurrence conditions for the gas-flow geyser.


2019 ◽  
Vol 140 ◽  
pp. 117-122 ◽  
Author(s):  
Kohei Hamaguchi ◽  
Eiji Hoashi ◽  
Takafumi Okita ◽  
Kenzo Ibano ◽  
Yoshio Ueda

2019 ◽  
Vol 263 ◽  
pp. 15-23 ◽  
Author(s):  
Abdulrahman Al-Behadili ◽  
Mathieu Sellier ◽  
James N. Hewett ◽  
Roger I. Nokes ◽  
Miguel Moyers-Gonzalez

Sign in / Sign up

Export Citation Format

Share Document