Energy dissipation and Hall effect on MHD convective flow of nanofluid within an asymmetric channel with arbitrary wall thickness and conductance

2021 ◽  
Vol 136 (10) ◽  
Author(s):  
Jitendra Kumar Singh ◽  
Suneetha Kolasani
2020 ◽  
Vol 10 (7) ◽  
pp. 2517
Author(s):  
Yihuan Wang ◽  
Zhan Wang ◽  
Jianrong Pan ◽  
Peng Wang

Modified blind bolts (Hollo-Bolt) and a locally strengthened steel tube column in the panel zone were created to overcome the moment-resisting problem for the bolted connections between concrete-filled hollow section columns and open section beams and to enhance the performance of connections. The cyclic loading was conducted on a total of six modified anchored blind bolted flush end-plate connections to concrete-filled steel tube (CFST) columns. The key parameters investigated were the tube wall thickness, end-plate thickness, blind bolt anchorage method, and beam section. The failure mode, hysteretic behavior, strength, stiffness, ductility, and energy dissipation capacity of the connections were analyzed and evaluated with all details. The results indicated that connections with modified anchored blind bolts and locally strengthened steel tubes could avoid the premature failure of CFST column and exhibit an improved behavior with a favorable strength, stiffness, and stiffness degradation. The test observations reveal two representative failure modes, and the tube wall thickness and blind bolt anchorage method have a significant effect on the resultant failure mode. Moreover, the use of thin endplate and weak beam can effectively enhance the hysteretic behavior of joints, ductility, and energy dissipation capacity; and the change in anchoring method has little effect on the stiffness. Finite element (FE) analysis models were established for the aforementioned connections. The numerical models were validated against the experimental results and exhibited good agreement. Finally, based on the component method, an initial stiffness calculation method was established for the connections.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Deepak Patil ◽  
C. Fred Higgs

In multiparticle simulations of industrial granular systems such as hoppers, tumblers, and mixers, the particle energy dissipation is governed by an important input parameter called the coefficient of restitution (COR). Oftentimes, the wall thickness in these systems is on the order of a particles diameter or less. However, the COR value implemented in event-driven simulations is either constant or a monotonically decreasing function of the impact velocity. The present work experimentally investigates the effect of wall thickness on the COR through sphere–thin plate elastoplastic impacts and elucidates the underlying impact phenomena. Experiments were performed on 0.635 cm and 0.476 cm diameter (d) spheres of various materials impacting aluminum 6061 plates of different thicknesses (t) with the low impact velocities up to 3.1 m/s. Besides COR, indentation measurements and numerical simulations are performed to gain a detailed understanding of the contact process and energy dissipation mechanism. As the “t/d” ratio decreases, a considerable amount of energy is dissipated into flexural vibrations leading to a significantly lower COR value. Based on the results, it can be concluded that using a constant COR input value in particle simulations may not always be an appropriate choice, especially, in the case of thin plates. However, these new COR results validate that when the wall thickness is more than twice the sphere diameter (i.e., t/d > 2), a constant COR value obtained for an impact with semi-infinite plate can be reasonably used.


Sign in / Sign up

Export Citation Format

Share Document