scholarly journals Plant Disease Identification Using Discrete Wavelet Transforms and SVM

2021 ◽  
Vol 23 (06) ◽  
pp. 108-112
Author(s):  
Kiran S M ◽  
◽  
Dr. Chandrappa D N ◽  

Disease detection in plants is one of the essential steps in the field of agriculture to improve the quality and yield of crops. Applications of image processing play a major role in the early detection of diseases and also in terms of accuracy and time consumption. In many plant health monitoring systems, Fourier and wavelet transform is applied for feature extraction from plant images and then they are classified using different classifiers. In this study, tomato leaf images are collected from the PlantVillage database, images are preprocessed to improve the contrast, and then image segmentation is performed using the k-means clustering technique. Texture features are extracted from the region of interest using Discrete Wavelet Transforms (DWT). Fourteen image features obtained from Daubechies (db3), Symlet (sym3), and biorthogonal (Bior 3.3, Bior 3.5, Bior 3.7) wavelets. These features are used to classify the images as healthy and unhealthy with the help of the Support Vector Machine (SVM) classifier. Performance of the system is measured in terms of Sensitivity, Specificity, and Accuracy. The proposed system classifies the images with a sensitivity of 92%, specificity of 84%, and accuracy of 88%.

2019 ◽  
Vol 8 (4) ◽  
pp. 11357-11360

Glaucoma disease diagnosis greatly based on the accurate retinal image segmentation and classification of images. Segmentation means to divide the images into a patchwork of regions, each of which is “homogeneous”, that is the “same” in some sense. Using discrete wavelet transform, the segmented images are classified by Support Vector Machine (SVM) classifiers to classify the Glaucoma images.The proposed Support Vector Machine classifier is used to extract the information rely on the Region of Interest (ROI) from original retinal fundus image. Thus the classification result are used to find the normal and abnormal image and also to compute the normal and abnormal accuracies.We observed an accuracy of around 93% using data set by SVM classifier.


2018 ◽  
Vol 7 (1.9) ◽  
pp. 119 ◽  
Author(s):  
The Jaswini S ◽  
K M Ravikumar

Affective computing is an emerging area of research in human computer interaction where researchers have developed automated assessment of human emotion states using physiological signals to establish affective human compute interactions. In this paper wepresent an efficient algorithm for emotion recognition using EEG signals for the data acquired by audio- video stimuli. The desired frequency bands are extracted using discrete wavelet transforms. The Statistical features, Hjorth parameters, differential entropy and wavelet features are extracted. Artificial neural networks, Support Vector Machine (SVM) and K- nearest neighbor are used on the extracted feature set to develop prediction models and to classify intofour emotion states likeclam, happy, fear and sad .These Artificial neural network models are evaluated on the acquired dataset and emotions are classified into four different states with over all accuracy of 86.36%.The classification rate of calm, happy, fear and sad states are 90.9%, 63.63%, 90.90 and 100 % respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Shengchun Long ◽  
Xiaoxiao Huang ◽  
Zhiqing Chen ◽  
Shahina Pardhan ◽  
Dingchang Zheng

Diabetic retinopathy (DR) is one of the most common causes of visual impairment. Automatic detection of hard exudates (HE) from retinal photographs is an important step for detection of DR. However, most of existing algorithms for HE detection are complex and inefficient. We have developed and evaluated an automatic retinal image processing algorithm for HE detection using dynamic threshold and fuzzy C-means clustering (FCM) followed by support vector machine (SVM) for classification. The proposed algorithm consisted of four main stages: (i) imaging preprocessing; (ii) localization of optic disc (OD); (iii) determination of candidate HE using dynamic threshold in combination with global threshold based on FCM; and (iv) extraction of eight texture features from the candidate HE region, which were then fed into an SVM classifier for automatic HE classification. The proposed algorithm was trained and cross-validated (10 fold) on a publicly available e-ophtha EX database (47 images) on pixel-level, achieving the overall average sensitivity, PPV, and F-score of 76.5%, 82.7%, and 76.7%. It was tested on another independent DIARETDB1 database (89 images) with the overall average sensitivity, specificity, and accuracy of 97.5%, 97.8%, and 97.7%, respectively. In summary, the satisfactory evaluation results on both retinal imaging databases demonstrated the effectiveness of our proposed algorithm for automatic HE detection, by using dynamic threshold and FCM followed by an SVM for classification.


Author(s):  
Madina Hamiane ◽  
Fatema Saeed

Magnetic Resonance Imaging is a powerful technique that helps in the diagnosis of various medical conditions. MRI Image pre-processing followed by detection of brain abnormalities, such as brain tumors, are considered in this work. These images are often corrupted by noise from various sources. The Discrete Wavelet Transforms (DWT) with details thresholding is used for efficient noise removal followed by edge detection and threshold segmentation of the denoised images. Segmented image features are then extracted using morphological operations. These features are finally used to train an improved Support Vector Machine classifier that uses a Gausssian radial basis function kernel. The performance of the classifier is evaluated and the results of the classification show that the proposed scheme accurately distinguishes normal brain images from the abnormal ones and benign lesions from malignant tumours. The accuracy of the classification is shown to be 100% which is superior to the results reported in the literature.


2018 ◽  
Vol 7 (2.25) ◽  
pp. 1
Author(s):  
Bethanney Janney.J ◽  
Umashankar G ◽  
Sindu Divakaran ◽  
Shelcy Mary Jo ◽  
Nancy Basilica.S

Cervical Cancer is the abnormal growth of tissues in the lower, narrow part of the uterus (womb) called the Cervix which connects the main body of the uterus, to the vagina or birth canal. Cervical cancer is one of the most common types of cancer that can be seen in women worldwide. Early detection and proper diagnosis can prevent the severity level and reduce the death rates .In this paper, we have proposed an automated diagnosis system of cervical cancer using texture features and Multiclass SVM (Support Vector Machine) Classifier in MRI images. Initially the MRI images are pre-processed to remove undesirable noises and other effects. After pre-processing, the image is segmented by Region growing method to obtain the region of interest. Texture features are extracted from the segmented region. Almost 22 features are extracted at the region of a segmented area and then passed on to Multiclass SVM Classifier to detect if the given image is cancerous or not. The results of the proposed techniques provide effective results for classifying cancerous and the non-cancerous image. 


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2019 ◽  
Vol 45 (10) ◽  
pp. 3193-3201 ◽  
Author(s):  
Yajuan Li ◽  
Xialing Huang ◽  
Yuwei Xia ◽  
Liling Long

Abstract Purpose To explore the value of CT-enhanced quantitative features combined with machine learning for differential diagnosis of renal chromophobe cell carcinoma (chRCC) and renal oncocytoma (RO). Methods Sixty-one cases of renal tumors (chRCC = 44; RO = 17) that were pathologically confirmed at our hospital between 2008 and 2018 were retrospectively analyzed. All patients had undergone preoperative enhanced CT scans including the corticomedullary (CMP), nephrographic (NP), and excretory phases (EP) of contrast enhancement. Volumes of interest (VOIs), including lesions on the images, were manually delineated using the RadCloud platform. A LASSO regression algorithm was used to screen the image features extracted from all VOIs. Five machine learning classifications were trained to distinguish chRCC from RO by using a fivefold cross-validation strategy. The performance of the classifier was mainly evaluated by areas under the receiver operating characteristic (ROC) curve and accuracy. Results In total, 1029 features were extracted from CMP, NP, and EP. The LASSO regression algorithm was used to screen out the four, four, and six best features, respectively, and eight features were selected when CMP and NP were combined. All five classifiers had good diagnostic performance, with area under the curve (AUC) values greater than 0.850, and support vector machine (SVM) classifier showed a diagnostic accuracy of 0.945 (AUC 0.964 ± 0.054; sensitivity 0.999; specificity 0.800), showing the best performance. Conclusions Accurate preoperative differential diagnosis of chRCC and RO can be facilitated by a combination of CT-enhanced quantitative features and machine learning.


Sign in / Sign up

Export Citation Format

Share Document