scholarly journals System levelized fuel cost of electricity generation in a two-component nuclear energy system with a closed uranium-plutonium NFC

2021 ◽  
Vol 7 (4) ◽  
pp. 303-309
Author(s):  
Anatoly V. Zrodnikov ◽  
Viktor M. Dekusar ◽  
Olga S. Gurskaya

The authors propose an approach to the calculation of the levelized unit fuel cost (LUFC) of electricity generation for a fast reactor in a two-component nuclear energy system (NES) with regard for plutonium production. The approach is based on taking into account the additional economic effect, which can be achieved through the sale at the market price of the natural uranium released due to the substitution of thermal reactors by fast reactors with MOX fuel based on the plutonium bred in a fast reactor. This requires considering simultaneously the reactor parts of the fuel cycle for fast and thermal reactors. Relationships have been obtained which connect the key neutronic and fuel characteristics with the NPP and fuel cycle economic performance. The described methodology was used for the computational study of the LUFC for a fast sodium-cooled reactor. Calculations have shown that, in the considered case, taking into account the plutonium production leads to the LUFC reduction by nearly half and, therefore, to a major decrease in the total unit cost of electricity generation (levelized cost of electricity or LCOE).

Author(s):  
Luigi De Paoli ◽  
Francesco Gulli

- The debate on the benefits of nuclear energy revolves around the very competitiveness of this energy source. This article tries to show why it is not easy to answer unambiguously the question whether or not it is convenient to resort to nuclear power in a given country. After listing the factors on which the cost of electricity generation rests and discussing the range of probability of their value, the levelized cost of electricity generation from nuclear, coal and gas-fired plants is calculated using the Monte Carlo method. The results show that nuclear power is likely to be competitive, especially if policies to combat CO2 emissions will continue in the coming decades. There are, however, some margins of uncertainty, mainly related, to the one hand, to the cost of nuclear plants, that depends on the socio-institutional context, and on the other, to the fossil fuels cost, that are inherently difficult to anticipate even on average. Finally it is noted that the context of liberalized electricity markets may make it more difficult for investors to accept the risk of investing in nuclear power plants and for the community to socialize some of the costs associated with this technology.Key words: Nuclear energy, generation costs, Montecarlo method, environmental impacts.JEL classifications: G11, H23, L72, L94, Q31, Q40


2021 ◽  
Vol 2021 (3) ◽  
pp. 5-17
Author(s):  
Anatoly Vasilyevich Zrodnikov ◽  
Victor Mihajlovich Dekusar ◽  
Olga Stanislavovna Gurskaya

2019 ◽  
Vol 5 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Andrey A. Andrianov ◽  
Ilya S. Kuptsov ◽  
Tatyana A. Osipova ◽  
Olga N. Andrianova ◽  
Tatyana V. Utyanskaya

The article presents a description and some illustrative results of the application of two optimization models for a two-component nuclear energy system consisting of thermal and fast reactors in a closed nuclear fuel cycle. These models correspond to two possible options of developing Russian nuclear energy system, which are discussed in the expert community: (1) thermal and fast reactors utilizing uranium and mixed oxide fuel, (2) thermal reactors utilizing uranium oxide fuel and fast reactors utilizing mixed nitride uranium-plutonium fuel. The optimization models elaborated using the IAEA MESSAGE energy planning tool make it possible not only to optimize the nuclear energy system structure according to the economic criterion, taking into account resource and infrastructural constraints, but also to be used as a basis for developing multi-objective, stochastic and robust optimization models of a two-component nuclear energy system. These models were elaborated in full compliance with the recommendations of the IAEA’s PESS and INPRO sections, regarding the specification of nuclear energy systems in MESSAGE. The study is based on publications of experts from NRC “Kurchatov Institute”, JSC “SSC RF-IPPE”, ITCP “Proryv”, JSC “NIKIET”. The presented results demonstrate the characteristic structural features of a two-component nuclear energy system for conservative assumptions in order to illustrate the capabilities of the developed optimization models. Consideration is also given to the economic feasibility of a technologically diversified nuclear energy structure providing the possibility of forming on its base a robust system in the future. It has been demonstrated that given the current uncertainties in the costs of nuclear fuel cycle services and reactor technologies, it is impossible at the moment to make a reasonable conclusion regarding the greatest attractiveness of a particular option in terms of the economic performance.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Richard Stainsby ◽  
Karen Peers ◽  
Colin Mitchell ◽  
Christian Poette ◽  
Konstantin Mikityuk ◽  
...  

Gas-cooled fast reactor (GFR) research is directed towards fulfilling the ambitious goals of Generation IV (Gen IV), that is, to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The research is directed towards developing the GFR as an economic electricity generator, with good safety and sustainability characteristics. Fast reactors maximise the usefulness of uranium resources by breeding plutonium and can contribute to minimising both the quantity and radiotoxicity nuclear waste by actinide transmutation in a closed fuel cycle. Transmutation is particularly effective in the GFR core owing to its inherently hard neutron spectrum. Further, GFR is suitable for hydrogen production and process heat applications through its high core outlet temperature. As such GFR can inherit the non-electricity applications that will be developed for thermal high temperature reactors in a sustainable manner. The Euratom organisation provides a route by which researchers in all European states, and other non-European affiliates, can contribute to the Gen IV GFR system. This paper summarises the achievements of Euratom's research into the GFR system, starting with the 5th Framework programme (FP5) GCFR project in 2000, through FP6 (2005 to 2009) and looking ahead to the proposed activities within the 7th Framework Programme (FP7).


2021 ◽  
Vol 7 (3) ◽  
pp. 165-172
Author(s):  
Vladimir I. Usanov ◽  
Stepan A. Kvyatkovskiy ◽  
Andrey A. Andrianov ◽  
Ilya S. Kuptsov

The paper presents the results from a multi-criteria comparative evaluation of potential deployment scenarios for Russian nuclear power with thermal and sodium-cooled fast reactors in a closed nuclear fuel cycle (the so-called two-component nuclear energy system). The comparison and the ranking were performed taking into account the recommendations and using the IAEA/INPRO software tools for comparative evaluation of nuclear energy systems, including tools for sensitivity/uncertainty analysis with respect to weighting factors. Ten potential Russian nuclear power deployment scenarios with different shares of thermal and sodium-cooled fast reactors were considered, including options involving the use of MOX fuel in VVER reactors. Eight key indicators were used, estimated as of 2100 and structured into a three-level objectives tree. The comparative evaluation and the ranking were carried out based on the multi-attribute value theory. The model for assessing the key indicators was developed using the IAEA/INPRO MESSAGE-NES energy system planning software tool. The information base for the study was formed by publications of experts from JSC SSC RF-IPPE, NRC Kurchatov Institute and NRNU MEPhI. The presented results show that it is possible to enhance significantly the sustainability of the Russian nuclear energy system, when considering multiple performance indicators, through the intensive deployment of sodium-cooled fast reactors and the transition to a closed nuclear fuel cycle. Tasks have been outlined for the follow-up studies to make it possible to obtain more rigorous conclusions regarding the preferred options for the evolution of a two-component nuclear energy system.


2018 ◽  
Vol 2018 (3) ◽  
pp. 100-112 ◽  
Author(s):  
Andrey Alekseevich Andrianov ◽  
Ilya Sergeevich Kuptsov ◽  
Tatiana Andreevna Osipova ◽  
Olga Nikolaevna Andrianova ◽  
Tatyana Vladimirovna Utyanskaya

Author(s):  
Marco Ciotti ◽  
Jorge L. Manzano ◽  
Vladimir Kuznetsov ◽  
Galina Fesenko ◽  
Luisa Ferroni ◽  
...  

Financial aspects, environmental concerns and non-favorable public opinion are strongly conditioning the deployment of new Nuclear Energy Systems across Europe. Nevertheless, new possibilities are emerging to render competitive electricity from Nuclear Power Plants (NPPs) owing to two factors: the first one, which is the fast growth of High Voltage lines interconnecting the European countries’ national electrical grids, this process being triggered by huge increase of the installed intermittent renewable electricity sources (Wind and PV); and the second one, determined by the carbon-free constraints imposed on the base load electricity generation. The countries that due to public opinion pressure can’t build new NPPs on their territory may find it profitable to produce base load nuclear electricity abroad, even at long distances, in order to comply with the European dispositions on the limitation of the CO2 emissions. In this study the benefits from operating at multinational level with the deployment of a fleet of PWRs and subsequently, at a proper time, the one of Lead Fast Reactors (LFRs) are analyzed. The analysis performed involves Italy (a country with a current moratorium on nuclear power on spite that its biggest utility operates NPPs abroad), and the countries from South East and Central East Europe potentially looking for introduction or expansion of their nuclear power programmes. According to the predicted evolution of their Gross Domestic Product (GDP) a forecast of the electricity consumption evolution for the present century is derived with the assumption that a certain fraction of it will be covered by nuclear electricity. In this context, evaluated are material balances for the front and the back end of nuclear fuel cycle associated with the installed nuclear capacity. A key element of the analysis is the particular type of LFR assumed in the scenario, characterized by having a fuel cycle where only fission products and the reprocessing losses are sent for disposition and natural or depleted uranium is added to fuel in each reprocessing cycle. Such LFR could be referred to as “adiabatic reactor”. Owing to introduction of such reactors a substantive reduction in uranium consumption and final disposal requirements can be achieved. Finally, the impacts of the LFR and the economy of scale in nuclear fuel cycle on the Levelized Cost of Electricity (LCOE) are being evaluated, for scaling up from a national to a multinational dimension, illustrating the benefits potentially achievable through cooperation among countries.


Author(s):  
Robin J. McDaniel

Small Modular Reactor (SMR) technologies have been recently deemed by the DOE as clean energy, a low carbon-dioxide emitting “alternative energy” source. Recent UN Sustainability Goals and Global Climate Talks to reduce the anthropomorphic Carbon-Dioxide atmospheric concentrations signal a renewed interest and need for nuclear power. The objective of this paper is to present an improved approach to the evaluation of “Hybrid Nuclear Energy Systems”. A hybrid energy system is defined as an energy system that utilizes two or more sources of energy to be used in single or multiple applications. Traditional single sourced energy or power systems require the amount of energy creation and the production of usable power to be carefully balanced. With the introduction of multiple energy sources, loads, and energy capacitors, the design, simulation, and operation of such hybrid systems requires a new approach to analysis and control. This paper introduces three examples of “Hybrid Nuclear Energy Systems”, for large scale power, industrial heat, and electricity generation. The system component independence, reliability, availability, and dynamic control aspects, coupled with component operational decisions presents a new way to optimize energy production and availability. Additional novel hybrid hydro-nuclear systems, concentrated solar-nuclear power desalination systems, and nuclear-insitu petroleum extraction systems are compared. The design aspects of such hybrid systems suitable for process heat, electricity generation, and/or desalination applications are discussed. After a multiple-year research study of past hybrid reactor designs and recent system proposals, the following design evaluation approach is the result of analysis of the best concepts discovered. This review of existing literature has summerized that postulated benefits of Hybrid Nuclear Sytems are; reduced greenhouse gas emissions, increased energy conversion efficiency, high reliability of electricity supply and consistent power quality, reduced fossil fuel dependence, less fresh water consumption, conversion of local coal or shale into higher value fuels, while lowering the risks and costs. As these proposed hybrid systems are interdisciplinary in nature, they will require a new multidisciplinary approach to systems evaluation.


2012 ◽  
Vol 4 (10) ◽  
pp. 2377-2398 ◽  
Author(s):  
Stefano Passerini ◽  
Mujid Kazimi

The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis), the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU) generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.


Sign in / Sign up

Export Citation Format

Share Document