anomalous absorption
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 2)

Foundations ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 265-270
Author(s):  
Eugene Oks

Measurements of cross-sections of charge exchange between hydrogen atoms and low energy protons (down to the energy ~10 eV) revealed a noticeable discrepancy with previous theories. The experimental cross-sections were systematically slightly higher—beyond the error margins—than the theoretical predictions. In the present paper, we study whether this discrepancy can be eliminated or at least reduced by using the Second Flavor of Hydrogen Atoms (SFHA) in calculations. We show that for the SFHA, the corresponding cross-section is noticeably larger than for the usual hydrogen atoms. We demonstrate that the allowance for the SFHA does bring the theoretical cross-sections in a noticeably better agreement with the corresponding experiments within the experimental error margins. This seems to constitute yet another evidence from atomic experiments that the SFHA is present within the mixture of hydrogen atoms. In combination with the first corresponding piece of evidence from the analysis of atomic experiments (concerning the distribution of the linear momentum in the ground state of hydrogen atoms), as well as with the astrophysical evidence from two different kinds of observations (the anomalous absorption of the redshifted 21 cm radio line from the early universe and the smoother distribution of dark matter than that predicted by the standard cosmology), the results of the present paper reinforce the status of the SFHA as the candidate for dark matter, or at least for a part of it.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shuo Dong ◽  
Lin Yi ◽  
Lexiao Cheng ◽  
Shijian Li ◽  
Weiming Yang ◽  
...  

Abstract Herein, by growing mono dispersed gold nanoparticles (MNPAu) on the surface of polystyrene (PS)/nanogold (Au) core–shell composites (PS@Au), we successfully synthesized a micron-sized gold cage (2.6–10.7 μm), referred to as PS@Au@MNPAu for the first time. The new micron-gold cage materials exhibit broadband absorption range from near-ultraviolet to near-infrared, which is unlike the conventional nanogold core–shell structure. The uniform growth of MNPAu on the surface forms a new photonic crystal spectrum. The strong coupling of the spectra causes anomalous absorption in the ultraviolet-near infrared band (400–900 nm). Furthermore, by removing the PS core, a nanogold cavity structure referred to as Au@MNPAu was prepared. This structure demonstrated a high purity (> 97 wt%), low density (9–223 mg/cm3), and high specific surface area (854 m2/g). As the purification process progressed, the MNPAu coupling on the surface of the micro-gold cage strengthened, resulting in the formation of peaks around 370 nm, plasma resonant peaks around 495 nm, and structural bands of photonic crystal peaks around 850 nm. The micron-sized gold cage provides hybridized and tunable plasmonic systems. The theoretical simulations indicate that this plasmon anomalous absorption phenomena can be understood as the novel form of the topological structural transitions near the percolation threshold, which is consistent experimental measurements.


2020 ◽  
Vol 36 ◽  
pp. 100824
Author(s):  
S.I. Glazyrin ◽  
A.V. Brantov ◽  
M.A. Rakitina ◽  
V.Yu Bychenkov

2020 ◽  
Vol 124 (18) ◽  
Author(s):  
D. Turnbull ◽  
A. V. Maximov ◽  
D. H. Edgell ◽  
W. Seka ◽  
R. K. Follett ◽  
...  

2020 ◽  
Vol 1531 ◽  
pp. 012020
Author(s):  
N Kumar ◽  
S Chandra ◽  
N Kant ◽  
M K Sharma ◽  
M Sharma
Keyword(s):  

Background: The effect of anomalously strong absorption, scattering and attenuation of microwave electromagnetic radiation by thin conductive wires is considered. The investigated effect can be used in the development of radio-absorbing and radio-masking materials for various purposes. The aim of the work is to clarify the physical nature of the effect. Materials and methods:. On the basis of the generalized Lorentz-Mi theory the mathematical model of diffraction interaction of microwave radiation with a cylindrical object which material is characterized by a complex refractive index is constructed. The case of normal incidence of a plane electromagnetic wave of E- and H-polarizations on a cylinder is considered. Numerical calculations of the field distribution were performed in the MathCard environment. Results: It is shown that for thick cylinders with a diameter greater than the wavelength, characteristic resonant peaks of absorption and scattering of wave energy are observed. For very thin cylinders, the diameter of which is much smaller than the wavelength, there are maxima of absorption and scattering of energy of incident radiation, which cannot be explained by resonant phenomena. Simplified analytical expressions for the efficiency coefficients of attenuation, absorption and scattering of electromagnetic radiation by thin cylinders are obtained. The field distributions inside and outside the dielectric and metal cylinders at different ratios of their diameter and wavelength of incident radiation are calculated. The efficiency of radiation absorption by a thin wire at different ratios of its diameter and skin-layer thickness for wire material has been studied. Conclusion: It was found that the effect of abnormally strong absorption of microwave radiation by very thin metal wires is due to the existence of a skin effect for conductive materials that interact with microwave radiation. It is obtained that the maximum efficiency of radiation absorption is achieved when the diameter of the wire is twice less than the thickness of the skin layer. The observed effect of anomalous absorption is nonresonant.


Sign in / Sign up

Export Citation Format

Share Document