electron cyclotron resonance heating
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 42)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 17 (01) ◽  
pp. C01016
Author(s):  
Y. Goto ◽  
T. Tokuzawa ◽  
D. Kuwahara ◽  
K. Ichinose ◽  
H. Tsuchiya ◽  
...  

Abstract In this study, we developed the Electron Cyclotron Emission Imaging (ECEI) system with the Q-band in the Large Helical Device (LHD). ECEI measurement makes it possible to obtain the spatiotemporal structure of magnetohydrodynamics (MHD) instabilities in the high-β plasma. Although there were several difficulties for realizing the multi-channelization, such as local oscillator (LO) optics and an expensive high-power LO source, we have solved these problems by developing a Local Integrated Antenna array (LIA) which has an internal LO supply, using a frequency doubler integrated circuit on each channel, instead of a conventional Horn-antenna Mixer Array (HMA) with common LOs. In addition, we have made some improvements to enhance the quality of the measurement signal. First, we developed and introduced notch filters that prevent the strong Electron Cyclotron Resonance Heating (ECRH) stray signal from being mixed into the measurement circuit. Second, the position of the doubler built in the printed circuit board was reconsidered to prevent the mixing of higher harmonic components into the mixer. Also, we have adopted the Logarithmic detector (LOG detector) to deal with the wide dynamic range of the plasma fluctuation. After these improvements, for the first time, we could successfully obtain the initial results of the two-dimensional temperature distribution and its fluctuation distribution in the LHD.


Author(s):  
Stefano Coda ◽  
Antoine Merle ◽  
Olivier Sauter ◽  
Laurie Porte ◽  
Filippo Bagnato ◽  
...  

Abstract The favourable confinement properties of negative-triangularity (NT) tokamak configurations were discovered in the TCV tokamak in the late 1990’s and were documented over the two following decades, through investigations of predominantly electron-heated plasmas in limited topologies. The most recent experimental campaign in TCV has marked a leap forward, characterized by the development of a variety of diverted NT shapes that are robustly stable with basic Ohmic heating. The application of auxiliary heating, directed now at both electrons and ions (using electron-cyclotron resonance heating as well as neutral-beam injection), has enabled the achievement of record performances for L-mode plasmas, with normalized β values reaching 2.8 transiently (as well as 2 in steady state, but reverting to a limited configuration) and with comparable ion and electron temperatures. The systematic confinement enhancement with NT is confirmed in these experiments. The L-mode existence space is broader than at positive triangularity, with only sporadic transitions to Hmode observed up to 1.4-MW heating power regardless of the magnetic-field-gradient direction relative to the X-point. These experiments are planned to be continued with even higher power following a heating-source upgrade.


2021 ◽  
Author(s):  
Peng Lu ◽  
Qiuran Wu ◽  
Hua Du ◽  
Yu Zheng ◽  
Xiaokang Zhang ◽  
...  

Abstract The neutron induced irradiation field is a key problem in fusion reactor related to nuclear responses, shielding design, nuclear safety, and thermo-hydraulic analysis. To support the system design of China Fusion Engineering Test Reactor (CFETR), the comprehensive analysis of irradiation field has been conducted in support of many new developed advanced tools. The paper first summarizes the recent progress on related neutronics code development effort including the geometry conversion tool cosVMPT, Monte Carlo variance reduction technology ‘on-the-fly’ global variance reduction (GVR). Such developed tools have been fully validated and applied on the CFETR nuclear analysis. The neutron irradiation has been evaluated on CFETR Water Cooled Ceramic Breeder (WCCB) blanket, divertor, vacuum vessel, superconductive coils and four kinds of heating systems including the Electron Cyclotron Resonance Heating (ECRH), Ion Cyclotron Resonance Heating (ICRH), Low Hybrid Wave (LHW) and Neutral Beam Injection (NBI). The nuclear responses of tritium breeding ratio (TBR), heating, irradiation damage, Hydrogen/Helium (H/He) production rate of material have been analyzed. In case of neutron damage and overheating deposition on the superconductive coils and Vacuum Vessel (VV), the interface and shielding design among heating systems, blanket and other systems has been initialized. The results show the shielding design can meet the requirement of coil and VV after several iterated neutronics calculation.


2021 ◽  
Vol 173 ◽  
pp. 112802
Author(s):  
Liyuan Zhang ◽  
Xiaojie Wang ◽  
Handong Xu ◽  
Dajun Wu ◽  
Yunying Tang ◽  
...  

2021 ◽  
Author(s):  
Shengyu Shi ◽  
Jiale Chen ◽  
Clarisse Bourdelle ◽  
Xiang Jian ◽  
Tomas Odstrcil ◽  
...  

Abstract The behavior of heavy/high-Z impurity tungsten (W) in an improved high-performance fully non-inductive discharge on EAST with ITER-like divertor (ILD) is analyzed. It is found that W could be well controlled. The causes of no W accumulation are clarified by analyzing the background plasma parameters and modeling the W transport. It turns out that the electron temperature (T_e) and its gradient are usually high while the toroidal rotation and density peaking of the bulk plasma are small. In this condition, the modeled W turbulent diffusion coefficient is big enough to offset the total turbulent and neoclassical pinch, so that W density profile for zero particle flux will not be very peaked. Combining NEO and TGLF for the W transport coefficient and the impurity transport code STRAHL, not only the core W density profile is predicted but also the radiated information mainly produced by W in the experiment can be closely reconstructed. At last, the physics of controlling W accumulation by electron cyclotron resonance heating (ECRH) is illustrated considering the effects of changed T_e by ECRH on ionization balance and transport of W. It shows that the change of ionization and recombination balance by changed T_e is not enough to explain the experimental observation of W behavior, which should be attributed to the changed W transport. By comparing the W transport coefficients in two kinds of plasmas with different T_e profiles, it is shown that high T_e and its gradient play a key role to generate large turbulent diffusion through increasing the growth rate of linear instability so that W accumulation is prevented.


2021 ◽  
Author(s):  
Rachael M McDermott ◽  
Clemente Angioni ◽  
Marco Cavedon ◽  
Athina Kappatou ◽  
Ralph Dux ◽  
...  

Abstract An experimental technique has been developed at ASDEX Upgrade (AUG) to separately identify the diffusive and convective components of the boron particle flux. Using this technique a database of B transport coefficients has been assembled that shows that the normalized ion temperature gradient (R/LTi) is the strongest organizing parameter for both the B diffusion and convection and large R/LTi is a necessary ingredient to obtain hollow B density profiles in AUG. This database also shows that large changes in the applied neutral beam injection (NBI) have a relatively small impact on impurity transport compared to similar changes in electron cyclotron resonance heating (ECRH). Even low levels of ECRH power dramatically increase both the diffusive and convective fluxes and lead to peaking of the impurity density profile. Comparisons to a combination of neoclassical and quasi-linear gyrokinetic simulations show good agreement in the measured and predicted diffusion coefficients. The outward convection measured in NBI dominated plasmas, however, is not well captured by the simulations, despite the inclusion of fast ions. In contrast, the convection is reasonably well reproduced for plasmas with flat or peaked boron density profiles. This dataset provides an excellent experimental validation of the non-monotonic, predicted, convective-particle-flux created by the combination of pure-pinch, thermo-diffusion, and roto-diffusion. In addition, this dataset demonstrates a non-monotonic dependence of the experimental particle diffusivity to ion heat conductivity (D/χi) in qualitative agreement with theoretical predictions.


2021 ◽  
Author(s):  
Santanu Karmakar ◽  
Jagadish C. Mudiganti

In this chapter, brief outline is presented about gyro-devices. Gyro-devices comprise of a family of microwave devices and gyrotron is one among those. Various gyro devices, namely, gyrotron, gyro-klystron and gyro traveling-wave tubes (gyro-TWT) are discussed. Gyrotron is the only microwave source which can generate megawatt range of power at millimeter-wave and sub-millimeter-wave frequency. Gyrotron is the most suitable millimeter wave source for the heating of plasma in the Tokamak for the controlled thermoneuclear fusion reactors. This device is used both for the electron cyclotron resonance heating (ECRH) as well as for the electron cyclotron current drive (ECCD). In this chapter, the basic theory of gyrotron operation are presented with the explanation of various sub-systems of gyrotron. The applications of gyrotrons are also discussed. Also, the present state-of-the-art worldwide scenario of gyrotrons suitable for plasma heating applications are presented in details.


Sign in / Sign up

Export Citation Format

Share Document