photosynthetic fractionation
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Clémence Paul ◽  
Clément Piel ◽  
Joana Sauze ◽  
Nicolas Pasquier ◽  
Frédéric Prié ◽  
...  

Abstract. The isotopic composition of dioxygen in the atmosphere is a global tracer which depends on the biosphere flux of dioxygen toward and from the atmosphere (photosynthesis and respiration) as well as exchanges with the stratosphere. When measured in fossil air trapped in ice cores, the relative concentration of 16O, 17O and 18O of O2 can be used for several applications such as ice core dating and past global productivity reconstruction. However, there are still uncertainties about the accuracy of these tracers as they depend on the integrated isotopic fractionation of different biological processes of dioxygen production and uptake, for which we currently have very few independent estimates. Here we determined the respiration and photosynthesis fractionation coefficients for atmospheric dioxygen from experiments carried out in a replicated vegetation-soil-atmosphere analog of the terrestrial biosphere in closed chambers with growing Festuca arundinacea. The values for 18O discrimination during soil respiration and dark respiration in leave are equal to −12.3 ± 1.7 ‰ and −19.1 ± 2.4 ‰, respectively. We also found a value for terrestrial photosynthetic fractionation equal to +3.7 ± 1.3 ‰. This last estimate suggests that the contribution of terrestrial productivity in the Dole effect may have been underestimated in previous studies.


2020 ◽  
Vol 21 (4) ◽  
pp. 1222 ◽  
Author(s):  
Giovanni Marino ◽  
Matthew Haworth ◽  
Andrea Scartazza ◽  
Roberto Tognetti ◽  
Mauro Centritto

Conductance of CO2 across the mesophyll (Gm) frequently constrains photosynthesis (PN) but cannot be measured directly. We examined Gm of cherry (Prunus avium L.) subjected to severe drought using the variable J method and carbon-isotopic composition (δ13C) of sugars from the centre of the leaf, the leaf petiole sap, and sap from the largest branch. Depending upon the location of the plant from which sugars are sampled, Gm may be estimated over scales ranging from a portion of the leaf to a canopy of leaves. Both the variable J and δ13C of sugars methods showed a reduction in Gm as soil water availability declined. The δ13C of sugars further from the source of their synthesis within the leaf did not correspond as closely to the diffusive and C-isotopic discrimination conditions reflected in the instantaneous measurement of gas exchange and chlorophyll-fluorescence utilised by the variable J approach. Post-photosynthetic fractionation processes and/or the release of sugars from stored carbohydrates (previously fixed under different environmental and C-isotopic discrimination conditions) may reduce the efficacy of the δ13C of sugars from leaf petiole and branch sap in estimating Gm in a short-term study. Consideration should be given to the spatial and temporal scales at which Gm is under observation in any experimental analysis.


2018 ◽  
Author(s):  
Yonge Zhang ◽  
Xinxiao Yu ◽  
Lihua Chen ◽  
Guodong Jia ◽  
Hanzhi Li

AbstractInvestigation of δ13C of leaf and twig phloem water-soluble organic material (WSOM) is a promising approach for analysis of the effects of environmental factors on plant performance. In this study, orthogonal treatments of three CO2 concentrations (Ca) × five soil water contents (SWC) were conducted using Platycladus orientalis saplings to investigate the interaction of water stress and CO2 concentration on δ13C of leaf and twig phloem WSOM. Under the lowest SWC, the δ13C of leaf and twig phloem WSOM had the most positive values at any Ca and their values decreased as Ca increased. However, at improved soil water conditions, the greatest values of δ13C of leaf and twig phloem WSOM were mostly observed at C600. In addition, a more significant relationship between SWC and δ13C of twig phloem WSOM than that between SWC and δ13C of leaf WSOM demonstrated that δ13C of twig phloem WSOM is a more sensitive indicator of SWC. Twig phloem WSOM was generally 13C-depleted compared with leaf WSOM for potential post-photosynthetic fractionation, and the 13C discrimination from leaves to twig phloem was insensitive to the interaction between SWC and Ca. Clearly, interacting effects play a more important role in photosynthetic fractionation than in post-photosynthetic fractionation.HighlightThe δ13C of leaf and twig phloem WSOM exhibited the most positive values at C400×35%–45% FC.Post-photosynthetic fractionation from leaf to twig was not be impacted by the interacting effects.


2018 ◽  
Vol 45 (5) ◽  
pp. 489 ◽  
Author(s):  
Allison R. Kolbe ◽  
Anthony J. Studer ◽  
Asaph B. Cousins

Carbon isotope discrimination is used to study CO2 diffusion, substrate availability for photosynthesis, and leaf biochemistry, but the intraspecific drivers of leaf carbon isotope composition (δ13C) in C4 species are not well understood. In this study, the role of photosynthetic enzymes and post-photosynthetic fractionation on δ13C (‰) was explored across diverse maize inbred lines. A significant 1.3‰ difference in δ13C was observed between lines but δ13C did not correlate with in vitro leaf carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), or ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity. RNA-sequencing was used to identify potential differences in post-photosynthetic metabolism that would influence δ13C; however, no correlations were identified that would indicate significant differences in post-photosynthetic fractionation between lines. Variation in δ13C has been observed between C4 subtypes, but differential expression of NADP-ME and PEP-CK pathways within these lines did not correlate with δ13C. However, co-expression network analysis provided novel evidence for isoforms of C4 enzymes and putative transporters. Together, these data indicate that diversity in maize δ13C cannot be fully explained by variation in CA, PEPC, or Rubisco activity or gene expression. The findings further emphasise the need for future work exploring the influence of stomatal sensitivity and mesophyll conductance on δ13C in maize.


2017 ◽  
Author(s):  
Yonge Zhang ◽  
Xinxiao Yu ◽  
Lihua Chen ◽  
Guodong Jia

ABSTRACTCompared to photosynthetic fractionation, the mechanism of post-photosynthetic carbon isotope fractionation is not well understood. The aim of this study was to investigate post-photosynthetic fractionation in both above and below ground tissues and to evaluate potential hypotheses explaining differences in carbon isotope composition (δ13C) among different plant organs, which can provide valuable insights into plant physiology. The results revealed that there is no significant day-night difference in δ13C of twig phloem water soluble organic materials (WSOM), which could be explained by the unrestricted exchange of triose-phosphates between the chloroplast and cytoplasm and a time lag for carbohydrate exportation. Further, we found that δ13C of twig phloem WSOM is more sensitive to plant water status than leaf WSOM. Analysis of δ13C in different plant organs showed that the greatest 13C enrichment was recorded in stem phloem. Divergences in δ13C of phloem WSOM among different plant organs were not likely to be explained by respiratory fractionation or time lag and were ascribed to transport of carbohydrates across organ boundaries and metabolic processes. Our study demonstrated that post-photosynthesis fractionation could not be ascribed to a single, unifying hypotheses; instead, it is the result of multiple processes.Highlightδ13C of twig phloem water soluble organic materials varied no clear diel pattern. In the leaf-twig-stem-root sequence, the greatest 13C enrichment was recorded in stem phloem.


2017 ◽  
Vol 14 (11) ◽  
pp. 2865-2875 ◽  
Author(s):  
Ana M. Morales-Williams ◽  
Alan D. Wanamaker Jr. ◽  
John A. Downing

Abstract. Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3−) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass–balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3− during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3− uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.


2011 ◽  
Vol 8 (2) ◽  
pp. 2403-2437 ◽  
Author(s):  
O. Gavrichkova ◽  
S. Proietti ◽  
S. Moscatello ◽  
S. Portarena ◽  
A. Battistelli ◽  
...  

Abstract. The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C to disentangle potential times needed to transfer carbohydrates produced by photosynthesis down to roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. For these purposes we have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consequent days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Nevertheless, it was possible to identify the speed of carbon translocation through the plant-soil continuum. A period of 24 h was needed to transfer the C assimilated by photosynthesis from the top crown leaves to the tree trunk at breast height and additional 3 h for further respiration of that C by roots and soil microorganisms and its to subsequent diffusion back to the atmosphere.


2005 ◽  
Vol 19 (11) ◽  
pp. 1381-1391 ◽  
Author(s):  
Franz-W. Badeck ◽  
Guillaume Tcherkez ◽  
Salvador Nogués ◽  
Clément Piel ◽  
Jaleh Ghashghaie

Sign in / Sign up

Export Citation Format

Share Document