photosynthetic products
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 8)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 22 (21) ◽  
pp. 11357
Author(s):  
Xiulan Xie ◽  
Ying Wang ◽  
Raju Datla ◽  
Maozhi Ren

The programs associated with embryonic roots (ERs), primary roots (PRs), lateral roots (LRs), and adventitious roots (ARs) play crucial roles in the growth and development of roots in plants. The root functions are involved in diverse processes such as water and nutrient absorption and their utilization, the storage of photosynthetic products, and stress tolerance. Hormones and signaling pathways play regulatory roles during root development. Among these, auxin is the most important hormone regulating root development. The target of rapamycin (TOR) signaling pathway has also been shown to play a key role in root developmental programs. In this article, the milestones and influential progress of studying crosstalk between auxin and TOR during the development of ERs, PRs, LRs and ARs, as well as their functional implications in root morphogenesis, development, and architecture, are systematically summarized and discussed.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 471
Author(s):  
Xiuxiu Deng ◽  
Zheng Shi ◽  
Lixiong Zeng ◽  
Lei Lei ◽  
Xuebing Xin ◽  
...  

Photosynthesis and the allocation of photosynthetic products are the two main factors that determine plant growth. To understand the growth and productivity of Pinus massoniana Lamb., the diurnal changes in photosynthetic rate were continuously monitored. Furthermore, the translocation and allocation of the photosynthetic products synthesized in the morning and afternoon were explored using 13C pulse labeling. The results showed that: (1) on sunny days, the diurnal variation of the net photosynthetic rate showed a “double peak” curve, with an obvious “a depression” when temperatures were highest and humidity lowest. On cloudy days, it showed an irregular “jagged” curve, which was curve consistent with the variations in photosynthetically active radiation (PAR). Meanwhile, the photosynthetic rate changed with the transient changes in environmental factors such as PAR, temperature, and humidity. (2) The mean value of the net photosynthetic rate in the morning was higher than in the afternoon, and the response of the net photosynthetic rate to environmental change (PAR, temperature, humidity, and CO2 concentration) in the morning was greater than that in the afternoon. (3) The translocation of photosynthetic products synthesized in the afternoon was faster than that in the morning. Shortly after synthesis of photosynthetic products, the translocation of products synthesized in the morning tended toward upper organs (including current-year leaves and 1-year leaves), while the translocation of products synthesized in the afternoon decreased in the upper organs. However, after 15 days of 13C pulse labeling, the allocation of the photosynthetic products synthesized in the morning and afternoon tended to be the same. These results indicate that the differences in the photosynthetic products synthesized and the temporal differences in the translocation rates did not affect the final allocation of the photosynthetic products in the various organs of the P. massoniana. These results improve our knowledge of the functional phases of P. massoniana during the diurnal cycle.


2021 ◽  
pp. 31-58
Author(s):  
Wataru Yamori

AbstractCrop productivity would have to increase by 60–110% compared with the 2005 level by 2050 to meet both the food and energy demands of the growing population. Although more than 90% of crop biomass is derived from photosynthetic products, photosynthetic improvements have not yet been addressed by breeding. Thus, it has been considered that enhancing photosynthetic capacity is considered a promising approach for increasing crop yield. Now, we need to identify the specific targets that would improve leaf photosynthesis to realize a new Green Revolution. This chapter summarizes the various genetic engineering approaches that can be used to enhance photosynthetic capacity and crop productivity. The targets considered for the possible candidates include Rubisco, Rubisco activase, enzymes of the Calvin–Benson cycle, and CO2 transport, as well as photosynthetic electron transport. Finally, it describes the importance of considering ways to improve photosynthesis not under the stable environmental conditions already examined in many studies with the aim of improving photosynthetic capacity, but under natural conditions in which various environmental factors, and especially irradiation, continually fluctuate.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243835
Author(s):  
Cong Li ◽  
Yu Liu ◽  
Jing Tian ◽  
Yanshu Zhu ◽  
Jinjuan Fan

Sucrose metabolism contributes to the growth and development of plants and helps plants cope with abiotic stresses, including stress from Cd. Many of these processes are not well-defined, including the mechanism underlying the response of sucrose metabolism to Cd stress. In this study, we investigated how sucrose metabolism in maize varieties with low (FY9) and high (SY33) sensitivities to Cd changed in response to different levels of Cd (0 (control), 5, 10, and 20 mg L−1 Cd). The results showed that photosynthesis was impaired, and the biomass decreased, in both varieties of maize at different Cd concentrations. Cd inhibited the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SS) (sucrose synthesis), and stimulated the activities of acid invertase (AI) and SS (sucrose hydrolysis). The total soluble sugar contents were higher in the Cd-treated seedlings than in the control. Also, Cd concentrations in the shoots were higher in SY33 than in FY9, and in the roots were lower in SY33 than in FY9. The decreases in the photosynthetic rate, synthesis of photosynthetic products, enzyme activity in sucrose synthesis direction, and increases in activity in hydrolysis direction were more obvious in SY33 (the sensitive variety) than in FY9 (the tolerant variety), and more photosynthetic products were converted into soluble sugar in SY33 than in FY9 as the Cd stress increased. The transcript levels of the sugar transporter genes also differed between the two varieties at different concentrations of Cd. These results suggest that sucrose metabolism may be a secondary response to Cd additions, and that the Cd-sensitive variety used more carbohydrates to defend against Cd stress rather than to support growth than the Cd-tolerant variety.


2020 ◽  
Vol 58 (4) ◽  
pp. 131-135
Author(s):  
Takanori KURONUMA ◽  
Qiyang WANG ◽  
Masaya ANDO ◽  
Hitoshi WATANABE

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Dongyan Liu ◽  
Qian Ma ◽  
Ivan Valiela ◽  
Donald M. Anderson ◽  
John K. Keesing ◽  
...  

Abstract Most marine algae preferentially assimilate CO2 via the Calvin-Benson Cycle (C3) and catalyze HCO3− dehydration via carbonic anhydrase (CA) as a CO2-compensatory mechanism, but certain species utilize the Hatch-Slack Cycle (C4) to enhance photosynthesis. The occurrence and importance of the C4 pathway remains uncertain, however. Here, we demonstrate that carbon fixation in Ulva prolifera, a species responsible for massive green tides, involves a combination of C3 and C4 pathways, and a CA-supported HCO3− mechanism. Analysis of CA and key C3 and C4 enzymes, and subsequent analysis of δ13C photosynthetic products showed that the species assimilates CO2 predominately via the C3 pathway, uses HCO3− via the CA mechanism at low CO2 levels, and takes advantage of high irradiance using the C4 pathway. This active and multi-faceted carbon acquisition strategy is advantageous for the formation of massive blooms, as thick floating mats are subject to intense surface irradiance and CO2 limitation.


2020 ◽  
Author(s):  
Seiji Kojima ◽  
Yasuaki Okumura

ABSTRACTChloroplasts originate from endosymbiosis of a cyanobacterium within a heterotrophic host cell. Establishing endosymbiosis requires the translocation across its envelope of photosynthetic products generated inside the once free-living cyanobacterium to be exploited by host metabolism. However, the nature of this translocation event is unknown. We previously found that most cyanobacterial outer membrane components were eliminated during the primitive stage of chloroplast evolution, suggesting the importance of evolutionary changes of the outer membrane. Here, we removed the outer membrane from Synechocystis sp. PCC 6803 by disrupting the physical interaction with peptidoglycan, and characterized the effects on cell function. Outer membrane-deprived cells liberated diverse substances into the environment without significantly compromising photoautotrophic growth. The amount of liberated proteins increased to ~0.35 g/L within five days of culture. Proteomic analysis showed that most liberated proteins were periplasmic and thylakoid luminal components. Connectivity between the thylakoid lumen-extracellular space was confirmed by findings that an exogenous hydrophilic oxidant was reduced by photosynthetic electron transport chain on the thylakoid membrane. Metabolomic analysis detected the release of nucleotide-related metabolites at concentrations around 1 μM. The liberated materials supported the proliferation of heterotrophic bacteria. These findings show that breaching the outer membrane, without any manipulations to the cytoplasmic membrane, converts a cyanobacterium to a chloroplast-like organism that conducts photosynthesis and releases its biogenic materials. This conversion not only represents a potential explanation why the outer membrane markedly changed during the earliest stage of chloroplast evolution, but also provides the opportunity to harness cyanobacterial photosynthesis for biomanufacturing processes.SIGNIFICANCE STATEMENTAlthough it is well accepted that chloroplasts stem from endosymbiosis of a cyanobacterium within a heterotrophic host cell, the issue of how photosynthetic products generated inside a formerly free-living cyanobacterium are translocated across its envelope and exploited by host metabolism has been little addressed. Here we show that breaching the cyanobacterial outer membrane barrier converts a cyanobacterium to a chloroplast-like organism that conducts photosynthesis and releases its diverse biogenic materials into its external environment, which sustains the growth of heterotrophic organisms. This conversion represents a possible example of metabolic exploitation of cyanobacterial photosynthesis. Further, this “quasi-chloroplast” provides a potential opportunity for industrial application such as producing feedstock for biomanufacturing processes that harnesses heterotrophic bacteria.


Author(s):  
Hiroki Shikata ◽  
Kazuma Ishida ◽  
Akihito Ono ◽  
Kyohei Terao ◽  
Hidekuni Takao ◽  
...  

2016 ◽  
Vol 29 (7) ◽  
pp. 584-592 ◽  
Author(s):  
Kojiro Takanashi ◽  
Takayuki Sasaki ◽  
Tomohiro Kan ◽  
Yuka Saida ◽  
Akifumi Sugiyama ◽  
...  

Legume plants can establish symbiosis with soil bacteria called rhizobia to obtain nitrogen as a nutrient directly from atmospheric N2 via symbiotic nitrogen fixation. Legumes and rhizobia form nodules, symbiotic organs in which fixed-nitrogen and photosynthetic products are exchanged between rhizobia and plant cells. The photosynthetic products supplied to rhizobia are thought to be dicarboxylates but little is known about the movement of dicarboxylates in the nodules. In terms of dicarboxylate transporters, an aluminum-activated malate transporter (ALMT) family is a strong candidate responsible for the membrane transport of carboxylates in nodules. Among the seven ALMT genes in the Lotus japonicus genome, only one, LjALMT4, shows a high expression in the nodules. LjALMT4 showed transport activity in a Xenopus oocyte system, with LjALMT4 mediating the efflux of dicarboxylates including malate, succinate, and fumarate, but not tricarboxylates such as citrate. LjALMT4 also mediated the influx of several inorganic anions. Organ-specific gene expression analysis showed LjALMT4 mRNA mainly in the parenchyma cells of nodule vascular bundles. These results suggest that LjALMT4 may not be involved in the direct supply of dicarboxylates to rhizobia in infected cells but is responsible for supplying malate as well as several anions necessary for symbiotic nitrogen fixation, via nodule vasculatures.


Sign in / Sign up

Export Citation Format

Share Document