export receptors
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Amartya Mishra ◽  
Jan Naseer Kaur ◽  
Daniel I. McSkimming ◽  
Eva Hegedusova ◽  
Ashutosh P. Dubey ◽  
...  

Kinetoplastids, including Trypanosoma brucei, control gene expression primarily at the posttranscriptional level. Nuclear mRNA export is an important, but understudied, step in this process. The general heterodimeric export factors, Mex67/Mtr2, function in the export of mRNAs and tRNAs in T. brucei, but RNA binding proteins (RBPs) that regulate export processes by controlling the dynamics of Mex67/Mtr2 ribonucleoprotein formation or transport have not been identified. Here, we report that DRBD18, an essential and abundant T. brucei RBP, associates with Mex67/Mtr2 in vivo, likely through its direct interaction with Mtr2. DRBD18 downregulation results in partial accumulation of poly(A)+ mRNA in the nucleus, but has no effect on localization of intron-containing or mature tRNAs. Comprehensive analysis of transcriptomes from whole cell and cytosol in DRBD18 knockdown parasites demonstrates that depletion of DRBD18 leads to impairment of nuclear export of a subset of mRNAs. CLIP experiments reveal association of DRBD18 with several of these mRNAs. Moreover, DRBD18 knockdown leads to a partial accumulation of the Mex67/Mtr2 export receptors in the nucleus. Taken together, the current study supports a model in which DRBD18 regulates the selective nuclear export of mRNAs by promoting the mobilization of export competent mRNPs to the cytosol through the nuclear pore complex.  


2021 ◽  
Author(s):  
Jan Andreas Ruland ◽  
Annika Marie Krueger ◽  
Kerstin Elisabeth Doerner ◽  
Rohan Bhatia ◽  
Sabine Wirths ◽  
...  

Ribosomal subunit biogenesis within mammalian cells initiates in the nucleolus with the assembly of a 90S precursor particle, which is subsequently split into the pre-40S and pre-60S subunits. During further processing steps, pre-ribosomal subunits are loaded with export receptors, which enables their passage through the pore complexes (NPCs) into the cytoplasm. Here export factors are released and both subunits can form a mature ribosome. Ribosomal biogenesis has been studied in great detail by biochemical, genetic and electron microscopic approaches, however, until now live cell data on the in vivo kinetics are still missing. We analysed export kinetics of the large ribosomal subunit (pre-60S particle) through single NPCs in living human cells. To assess the in vivo dynamics of this process, we established a stable cell line co-expressing Halo-tagged eIF6 and GFP-fused NTF2 to simultaneously label ribosomal 60S subunits (eIF6) and NPCs (NTF2). By combining single molecule tracking and super resolution confocal microscopy in a highly customized microscopic setup, we visualized the dynamics of single pre-60S particles during the interaction with and export through single NPCs. In this way we obtained unprecedented insights into this key cellular process. Our results revealed that for export events, maximum particle accumulation is found in the centre of the pore, while unsuccessful export terminates within the nuclear basket. The export process takes place with a single rate limiting step and an export dwell time of ~24 milliseconds. Only about 1/3 of attempted export events were successful. Given the molecular mass of the pre-60S particles our results show that the mass flux through a single NPC can reach up to ~125 MDa s-1 in vivo.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Constance Rink ◽  
Martin Ciganda ◽  
Noreen Williams

ABSTRACT Ribosomal maturation is a complex and highly conserved biological process involving migration of a continuously changing RNP across multiple cellular compartments. A critical point in this process is the translocation of individual ribosomal subunits (60S and 40S) from the nucleus to the cytoplasm, and a number of export factors participate in this process. In this study, we characterize the functional role of the auxiliary export receptors TbMex67 and TbMtr2 in ribosome biogenesis in the parasite Trypanosoma brucei. We demonstrate that depletion of each of these proteins dramatically impacts the steady-state levels of other proteins involved in ribosome biogenesis, including the trypanosome-specific factors P34 and P37. In addition, we observe that the loss of TbMex67 or TbMtr2 leads to aberrant ribosome formation, rRNA processing, and polysome formation. Although the TbMex67-TbMtr2 heterodimer is structurally distinct from Mex67-Mtr2 complexes previously studied, our data show that they retain a conserved function in ribosome biogenesis. IMPORTANCE The nuclear export of ribosomal subunits (60S and 40S) depends in part on the activity of the essential auxiliary export receptors TbMtr2 and TbMex67. When these proteins are individually depleted from the medically and agriculturally significant parasite Trypanosoma brucei, distinct alterations in the processing of the rRNAs of the large subunit (60S) are observed as well as aberrations in the assembly of functional ribosomes (polysomes). We also established that TbMex67 and TbMtr2 interact directly or indirectly with the protein components of the 5S RNP, including the trypanosome-specific P34/P37. The critical role that TbMex67 and TbMtr2 play in this essential biological process together with their parasite-specific interactions may provide new therapeutic targets against this important parasite.


2013 ◽  
Vol 13 (2) ◽  
pp. 209-230 ◽  
Author(s):  
Jacqueline B. Pierce ◽  
George van der Merwe ◽  
Dev Mangroo

ABSTRACTThe two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited inSaccharomyces cerevisiaedeprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors.


2012 ◽  
Vol 90 (6) ◽  
pp. 731-749 ◽  
Author(s):  
Manoja B.K. Eswara ◽  
Ashley Clayton ◽  
Dev Mangroo

Utp8p is an essential nucleolar protein that channels aminoacyl-tRNAs from aminoacyl-tRNA synthetases in the nucleolus to the nuclear tRNA export receptors located in the nucleoplasm and nuclear pore complex in Saccharomyces cerevisiae . Utp8p is also part of the U3 snoRNA-associated protein complex involved in 18S rRNA biogenesis in the nucleolus. We report that Utp22p, which is another member of the U3 snoRNA-associated protein complex, is also an intranuclear component of the nuclear tRNA export machinery. Depletion of Utp22p results in nuclear retention of mature tRNAs derived from intron-containing and intronless precursors. Moreover, Utp22p copurifies with the nuclear tRNA export receptor Los1p, the aminoacyl-tRNA synthetase Tys1p and Utp8p, but not with the RanGTPase Gsp1p and the nuclear tRNA export receptor Msn5p. Utp22p interacts directly with Utp8p and Los1p in a tRNA-independent manner in vitro. Utp22p also interacts directly with Tys1p, but this binding is stimulated when Tys1p is bound to tRNA. However, Utp22p, unlike Utp8p, does not bind tRNA saturably. These data suggest that Utp22p recruits Utp8p to aminoacyl-tRNA synthetases in the nucleolus to collect aminoacyl-tRNA and then accompanies the Utp8p–tRNA complex to deliver the aminoacyl-tRNAs to Los1p but not Msn5p. It is possible that Nrap/Nol6, the mammalian orthologue of Utp22p, plays a role in channelling aminoacyl-tRNA to the nuclear tRNA export receptor exportin-t.


2012 ◽  
Vol 393 (7) ◽  
pp. 599-604 ◽  
Author(s):  
Matthias S. Leisegang ◽  
Roman Martin ◽  
Ana S. Ramírez ◽  
Markus T. Bohnsack

Abstract The biogenesis of most eukaryotic kinds of RNA requires nuclear export, which is mediated by a variety of specific nuclear transport receptors. The nuclear export receptors Exportin-t (Exp-t) and Exportin 5 (Exp5), and their homologues, are involved in the export of transfer RNA to the cytoplasm. Exp5 is further involved in additional nucleocytoplasmic transport pathways, which include nuclear export of microRNA precursors (pre-miRNAs) and pre-60S ribosomal subunits. Inactivation of Exp5 results in nuclear accumulation of pre-miRNAs and perturbation of gene expression, and its mutation was recently found in malignant diseases. Here, we compare the cellular function of Exp5 and Exp-t with focus on Exp5 substrates and its role in diseases.


2011 ◽  
Vol 22 (24) ◽  
pp. 4868-4882 ◽  
Author(s):  
Jacqueline Goeres ◽  
Pak-Kei Chan ◽  
Debaditya Mukhopadhyay ◽  
Hong Zhang ◽  
Brian Raught ◽  
...  

The association of small, ubiquitin-related modifier–specific isopeptidases (also known as sentrin-specific proteases, or SENPs) with nuclear pore complexes (NPCs) is conserved in eukaryotic organisms ranging from yeast to mammals. However, the functional significance of this association remains poorly understood, particularly in mammalian cells. In this study, we have characterized the molecular basis for interactions between SENP2 and NPCs in human cells. Using fluorescence recovery after photobleaching, we demonstrate that SENP2, although concentrated at the nuclear basket, is dynamically associated with NPCs. This association is mediated by multiple targeting elements within the N-terminus of SENP2 that function cooperatively to mediate NPC localization. One of these elements consists of a high-affinity nuclear localization signal that mediates indirect tethering to FG-repeat–containing nucleoporins through karyopherins. A second element mediates interactions with the Nup107-160 nucleoporin subcomplex. A third element consists of a nuclear export signal. Collectively, our findings reveal that SENP2 is tethered to NPCs through a complex interplay of interactions with nuclear import and export receptors and nucleoporins. Disruption of these interactions enhances SENP2 substrate accessibility, suggesting an important regulatory node in the SUMO pathway.


2010 ◽  
Vol 98 (3) ◽  
pp. 307a
Author(s):  
Ulrike Schmitz-Ziffels ◽  
Andreas Veenendaal ◽  
Jan Peter Siebrasse ◽  
Ulrich Kubitscheck

Sign in / Sign up

Export Citation Format

Share Document