hydrochemical modeling
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Xinhui He ◽  
Hong Zhou ◽  
Junwei Wan ◽  
Heng Zhao ◽  
Shiyi He

Abstract Qingjiang river is the second largest tributary of the Yangtze River in Hubei province, it’s also a typical karst catchment. Eighty-two important groundwater samples were collected during high and low water period of 2019. The results show that: (1) The major hydrochemistry types are Ca+Mg-HCO3 and Ca-HCO3, indicate that carbonate weathering is the main source of groundwater chemistry; (2) The results of inverse hydrochemical modeling show that there are two kinds of groundwater-carbonate rock interactions. One is co-dissolution of calcite and dolomite, the other is dedolomitization, and thereinto, dedolomitization is widespread in dolomite aquifers. Furthermore, gypsum has a tendency to dissolve in each aquifer, and the common ion effect of Ca2+ caused by gypsum dissolution promotes dedolomitization. The modeling results suggest that major elements have a good traceability effect on the material source of groundwater. (3) The chemical weathering of carbonate rock is mainly affected by carbonic acid, sulfuric acid and nitric acid. After modifying the impact of evaporite and atmospheric input, the calculations show that the contribution of carbonic acid involved in carbonate weathering is 70.9% (high water period) and 70.0% (low water period). Through statistics of karst springs discharge and contribution of acid involved in carbonate weathering, the two are in a positive relationship. The result can reflect the laws of sulfuric acid and nitric acid under the hydrodynamic condition in different seasons. Therefore, the carbonate weathering should be carefully evaluated in karst areas which have abundant groundwater and the role of groundwater in carbonate weathering is worthy of further study.


Author(s):  
В.В. Кузьмин ◽  
К.А. Болдырев

Изложена методика прогнозирования распространения нефтепродуктов группы BTEX (бензол, толуол, этилбензол, ксилолы) в подземных водах на основе гидрохимического моделирования с учетом изменения окислительно-восстановительных и кислотно-щелочных свойств раствора в процессе биодеградации нефтепродуктов. Представлена геохимическая модель биологического разложения нефтепродуктов комплекса BTEX на основе модифицированной кинетики Моно с учетом реакций между акцепторами, продуктами реакции биодеградации и неорганическими компонентами раствора. Приведены примеры геохимического моделирования, демонстрирующие важность учета процессов, связанных с изменением гидрогеохимической обстановки в подземных водах при разложении углеводородов. Разработанная модель может быть использована для выполнения геохимических прогнозов распространения легких нефтепродуктов в подземных водах, проведения работ в рамках оценки воздействия на природную среду, разработки систем инженерной защиты подземных вод от загрязнения нефтепродуктами. A method for predicting the spread of BTEX group oil products (benzene, toluene, ethylbenzene, xylenes) in groundwater based on hydrochemical modeling with account of changes in the redox, acidity or alkalinity of the solution during the biodegradation of oil products is stated. A geochemical model of the biological decomposition of oil products of BTEX group based on modified Mono kinetics with account of the reactions between acceptors, biodegradation products and inorganic components of the solution is presented. Examples of geochemical modeling are given that demonstrate the importance of taking into account the processes associated with the changes in the hydrogeochemical environment in groundwater during the decomposition of hydrocarbons. The developed model can be used to carry out geochemical predictions of the spread of light-end oil products in groundwater, to carry out works within the framework of estimating the environmental impact, and to develop systems for engineering protection of groundwater from oil pollution.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jamil Siddique ◽  
Jin Menggui ◽  
Munir H. Shah ◽  
Asfandyar Shahab ◽  
Faisal Rehman ◽  
...  

Hydrochemical characteristics and aquifer properties present a better understanding of the mitigation of groundwater pollution, which has become one of the leading environmental concerns and threats to the sustainable ecosystem. Seventy-seven groundwater samples were collected from Sargodha District (Pakistan) and characterized for their physical and chemical properties. The analytical data were processed for the evaluation of the processes that control the groundwater chemistry using various drinking and agricultural indices with statistical and hydrochemical modeling. The predominant hydrochemical type was found to be Ca-HCO3 type, followed by Na-HCO3 and Mg-Ca-Cl types. The present study showed that the main factors controlling the groundwater chemistry were the prevalent rock dominance alongside the weathering of silicates, solubilization of carbonates, and cation exchange processes. Entropy water quality index (EWQI) revealed that 6.51% represented “poor water,” while 7.79% were considered “extremely poor” for drinking purposes. However, USSL classification, Wilcox diagram, and other agricultural indices (RCS, SAR, %Na, MH, PI, and PS) showed that the majority of the samples were classified as suitable for irrigation purpose. However, 16% of the samples for %Na and 24% of the samples for MH were not suitable for agricultural purposes. Overall, the groundwater quality was affected by the anthropogenic stress in the study area.


2016 ◽  
Vol 75 (14) ◽  
Author(s):  
K. Labus ◽  
P. Bujok ◽  
M. Klempa ◽  
M. Porzer ◽  
D. Matýsek

Abstract Prediction of hydrogeochemical effects of geological CO2 sequestration is crucial for planning an industrial or even experimental scale injection of carbon dioxide gas into geological formations. This paper presents a preliminary study of the suitability of saline aquifer associated with a depleted oil field in Czech Part of Vienna Basin, as potential greenhouse gas repository. Two steps of modeling enabled prediction of immediate changes in the aquifer and caprocks impacted by the first stage of CO2 injection and the assessment of long-term effects of sequestration. Hydrochemical modeling and experimental tests of rock–water–gas interactions allowed for evaluation of trapping mechanisms and assessment of CO2 storage capacity of the formations. In the analyzed aquifer, CO2 gas may be locked in mineral form in dolomite and dawsonite, and the calculated trapping capacity reaches 13.22 kgCO2/m3. For the caprock, the only mineral able to trap CO2 is dolomite, and trapping capacity equals to 5.07 kgCO2/m3.


2014 ◽  
Vol 6 (2) ◽  
pp. 132 ◽  
Author(s):  
Janete Moran-Ramirez ◽  
Jose Alfredo Ramos-Leal

Hydrogeochemistry can be studied qualitatively using graphics such as scatter plots and Piper, Durov, and Schoeller diagrams, among others, and quantitatively by applying mass balance mixing models. The VISHMOD methodology (Virtual Samples in Hydrochemical Modeling) combines these two forms of hydrogeochemical characterizations. It is performed by applying hydrogeochemical modeling to virtual samples. This method makes standardization and control possible in order to demonstrate the extent to which a model is able to reproduce field measurements. Therefore, hydrogeochemical models of hydrogeological systems must be calibrated. This methodology was applied to carbonate and homogeneous media in the Sierra Madre Oriental in Mexico. Using the VISHMOD methodology in this region resulted in the classification of the water type as calcium bicarbonate (Ca-HCO3), representing a ternary mixture in which 45.5% was associated with local flow, 38.5% to intermediate flow and 16.5% to water-rock interaction. The main mineral phases were saturated calcite and sub-saturated dolomite, both from limestone contained in the Tamaulipas Formation.


2012 ◽  
Vol 19 (2) ◽  
pp. 51-64 ◽  
Author(s):  
Teruki IWATSUKI ◽  
Takashi MIZUNO ◽  
Takanori KUNIMARU ◽  
Yuki AMANO ◽  
Tatsuji MATSUZAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document