scholarly journals Low-altitude Sensing of Urban Atmospheric Turbulence with UAV

Author(s):  
Alexander Shelekhov ◽  
Aleksey Afanasiev ◽  
Evgenia Shelekhova ◽  
Alexey Kobzev ◽  
Alexey Tel’minov ◽  
...  

The capabilities of a quadcopter in the hover mode for low-altitude sensing of atmospheric turbulence with high spatial resolution in urban areas characterized by complex orography are investigated. The studies were carried out in different seasons (winter, spring, summer, and fall), and the quadcopter hovered in the immediate vicinity of ultrasonic weather stations. The DJI Phantom 4 Pro quadcopter and AMK-03 ultrasonic weather stations installed in different places of the studied territory were used in the experiment. The smoothing procedure was used to main regularities in the behavior of the longitudinal and lateral spectra of turbulence in the inertial and energy production ranges. The longitudinal and lateral turbulence scales were estimated by the least-square fit method with the von Karman model as a regression curve. It is shown that the turbulence spectra obtained with DJI Phantom 4 Pro and AMK-03 generally coincide with minor differences observed in the high-frequency region of the spectrum. In the inertial range, the behavior of the turbulence spectra shows that they obey the Kolmogorov-Obukhov “5/3” law. In the energy production range, the longitudinal and lateral turbulence scales and their ratio measured by DJI Phantom 4 Pro and AMK-03 agree to a good accuracy. Discrepancies in the data obtained with the quadcopter and the ultrasonic weather stations at the territory with complex orography are explained by the partial correlation of the wind velocity series at different measurement points and the influence of the inhomogeneous surface.

Author(s):  
Kjersti Gjønnes ◽  
Jon Gjønnes

Electron diffraction intensities can be obtained at large scattering angles (sinθ/λ ≥ 2.0), and thus structure information can be collected in regions of reciprocal space that are not accessable with other diffraction methods. LACBED intensities in this range can be utilized for determination of accurate temperature factors or for refinement of coordinates. Such high index reflections can usually be treated kinematically or as a pertubed two-beam case. Application to Y Ba2Cu3O7 shows that a least square refinememt based on integrated intensities can determine temperature factors or coordinates.LACBED patterns taken in the (00l) systematic row show an easily recognisable pattern of narrow bands from reflections in the range 15 < l < 40 (figure 1). Integrated intensities obtained from measured intensity profiles after subtraction of inelastic background (figure 2) were used in the least square fit for determination of temperature factors and refinement of z-coordinates for the Ba- and Cu-atoms.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Marco Carbone ◽  
Michele Turco ◽  
Giuseppe Brunetti ◽  
Patrizia Piro

Design storms are very useful in many hydrological and hydraulic practices and are obtained from statistical analysis of precipitation records. However considering design storms, which are often quite unlike the natural rainstorms, may result in designing oversized or undersized drainage facilities. For these reasons, in this study, a two-parameter double exponential function is proposed to parameterize historical storm events. The proposed function has been assessed against the storms selected from 5-year rainfall time series with a 1-minute resolution, measured by three meteorological stations located in Calabria, Italy. In particular, a nonlinear least square optimization has been used to identify parameters. In previous studies, several evaluation methods to measure the goodness of fit have been used with excellent performances. One parameter is related to the centroid of the rain distribution; the second one is related to high values of the standard deviation of the kurtosis for the selected events. Finally, considering the similarity between the proposed function and the Gumbel function, the two parameters have been computed with the method of moments; in this case, the correlation values were lower than those computed with nonlinear least squares optimization but sufficiently accurate for designing purposes.


1968 ◽  
Vol 58 (3) ◽  
pp. 977-991
Author(s):  
Richard A. Haubrich

abstract Arrays of detectors placed at discrete points are often used in problems requiring high resolution in wave number for a limited number of detectors. The resolution performance of an array depends on the positions of detectors as well as the data processing of the array output. The performance can be expressed in terms of the “spectrum window”. Spectrum windows may be designed by a general least-square fit procedure. An alternate approach is to design the array to obtain the largest uniformly spaced coarray, the set of points which includes all the difference spacings of the array. Some designs obtained from the two methods are given and compared.


2019 ◽  
Vol 11 (8) ◽  
pp. 2418 ◽  
Author(s):  
Nadia Singh ◽  
Richard Nyuur ◽  
Ben Richmond

Renewable energy is being increasingly touted as the “fuel of the future,” which will help to reconcile the prerogatives of high economic growth and an economically friendly development trajectory. This paper seeks to examine relationships between renewable energy production and economic growth and the differential impact on both developed and developing economies. We employed the Fully Modified Ordinary Least Square (FMOLS) regression model to a sample of 20 developed and developing countries for the period 1995–2016. Our key empirical findings reveal that renewable energy production is associated with a positive and statistically significant impact on economic growth in both developed and developing countries for the period 1995–2016. Our results also show that the impact of renewable energy production on economic growth is higher in developing economies, as compared to developed economies. In developed countries, an increase in renewable energy production leads to a 0.07 per cent rise in output, compared to only 0.05 per cent rise in output for developing countries. These findings have important implications for policymakers and reveal that renewable energy production can offer an environmentally sustainable means of economic growth in the future.


2019 ◽  
Author(s):  
Sandor Kristyan

The equations derived help to evaluate semi-analytically (mostly for k=1,2 or 3) the important Coulomb integrals Int rho(r1)…rho(rk) W(r1,…,rk) dr1…drk, where the one-electron density, rho(r1), is a linear combination (LC) of Gaussian functions of position vector variable r1. It is capable to describe the electron clouds in molecules, solids or any media/ensemble of materials, weight W is the distance operator indicated in the title. R stands for nucleus-electron and r for electron-electron distances. The n=m=0 case is trivial, the (n,m)=(1,0) and (0,1) cases, for which analytical expressions are well known, are widely used in the practice of computation chemistry (CC) or physics, and analytical expressions are also known for the cases n,m=0,1,2. The rest of the cases – mainly with any real (integer, non-integer, positive or negative) n and m - needs evaluation. We base this on the Gaussian expansion of |r|^-u, of which only the u=1 is the physical Coulomb potential, but the u≠1 cases are useful for (certain series based) correction for (the different) approximate solutions of Schrödinger equation, for example, in its wave-function corrections or correlation calculations. Solving the related linear equation system (LES), the expansion |r|^-u about equal SUM(k=0toL)SUM(i=1toM) Cik r^2k exp(-Aik r^2) is analyzed for |r| = r12 or RC1 with least square fit (LSF) and modified Taylor expansion. These evaluated analytic expressions for Coulomb integrals (up to Gaussian function integrand and the Gaussian expansion of |r|^-u) are useful for the manipulation with higher moments of inter-electronic distances via W, even for approximating Hamiltonian.


2021 ◽  
Vol 19 (2) ◽  
pp. 135
Author(s):  
Boanerges Putra Sipayung ◽  
Theodorus Fobia ◽  
Werenfridus Taena ◽  
Umbu Joka

<p>Village funds allocation has been provided to village government by central government starting in 2015. The provision of village funds aims at ingreasing equitable development in urban areas. This study aims to design a model of implementation of village funds management and farmer empowerment, with a case of Manusasi Village, Timor Tengah Utara Distict, bordering with Timor Leste. This research was conducted in August-September 2020. The methods used in this research were quantitative descriptive analysis and SEM based on variance, namely Partial Least Square (PLS). The sampling method used in this study was accidental sampling, with the chosen sample of 75 households from the total popultation 258 huosehold farmers. Results of this study indicated that planning had a significant effect on the evaluation process of village funds. The multiplier effect value of village funds in Manusasi Village was 1.39. There was no direct effect between physical capital, social capital, and human capital on the empowermeny of farming community in Manusasi Village. An important component of the implementation model of village fund management and farmer empowerment is the socialisation of the use of village funds which aims to increase public knowledge about village funds and build partnerships with universities or other institutions as sources of experts. The role of experts is to help improve village fund management and improve the quality of programs and planning. </p>


2019 ◽  
Vol 113 ◽  
pp. 03005
Author(s):  
Enrico Valditerra ◽  
Massimo Rivarolo ◽  
Aristide F. Massardo ◽  
Marco Gualco

Wind turbine installation worldwide has increased at unrested pace, as it represents a 100% clean energy with zero CO2 and pollutant emissions. However, visual and acoustic impact of wind turbines is still a drawback, in particular in urban areas. This paper focuses on the performance evaluation of an innovative horizontal axis ducted wind turbine, installed in the harbour of Genova (Italy) in 2018: the turbine was designed in order to minimize visual and acoustic impacts and maximize electrical energy production, also during low wind speed periods. The preliminary study and experimental analyses, performed by the authors in a previous study, showed promising results in terms of energy production, compared to a traditional generator ( factor >2.5 on power output). In the present paper, the test campaign on a scaled-up prototype, installed in the urban area of Genova, is performed, with a twofold objective: (i) comparison of the ducted innovative turbine with a standard one, in order to verify the increase in energy production; (ii) analysis of the innovative turbine for different wind speeds and directions, evaluating the influence of ambient conditions on performance. Finally, based on the obtained results, an improved setup is proposed for the ducted wind turbine, in order to further increase energy production mitigating its visual impact.


2019 ◽  
Vol 12 (4) ◽  
pp. 2043-2066 ◽  
Author(s):  
Angel J. Gomez-Pelaez ◽  
Ramon Ramos ◽  
Emilio Cuevas ◽  
Vanessa Gomez-Trueba ◽  
Enrique Reyes

Abstract. At the end of 2015, a CO2/CH4/CO cavity ring-down spectrometer (CRDS) was installed at the Izaña Global Atmosphere Watch (GAW) station (Tenerife, Spain) to improve the Izaña Greenhouse Gases GAW Measurement Programme, and to guarantee the renewal of the instrumentation and the long-term maintenance of this program. We present the results of the CRDS acceptance tests, the raw data processing scheme applied, and the response functions used. Also, the calibration results, the implemented water vapor correction, the target gas injection statistics, the ambient measurements performed from December 2015 to July 2017, and their comparison with other continuous in situ measurements are described. The agreement with other in situ continuous measurements is good most of the time for CO2 and CH4, but for CO it is just outside the GAW 2 ppb objective. It seems the disagreement is not produced by significant drifts in the CRDS CO World Meteorological Organization (WMO) tertiary standards. The more relevant contributions of the present article are (1) determination of linear relationships between flow rate, CRDS inlet pressure, and CRDS outlet valve aperture; (2) determination of a slight CO2 correction that takes into account changes in the inlet pressure/flow rate (as well as its stability over the years), and attributing it to the existence of a small spatial inhomogeneity in the pressure field inside the CRDS cavity due to the gas dynamics; (3) drift rate determination for the pressure and temperature sensors located inside the CRDS cavity from the CO2 and CH4 response function drift trends; (4) the determination of the H2O correction for CO has been performed using raw spectral peak data instead of the raw CO provided by the CRDS and using a running mean to smooth random noise in a long water-droplet test (12 h) before performing the least square fit; and (5) the existence of a small H2O dependence in the CRDS flow and of a small spatial inhomogeneity in the temperature field inside the CRDS cavity are pointed out and their origin discussed.


Sign in / Sign up

Export Citation Format

Share Document