dwarf disease
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weixiao Zhang ◽  
Suining Deng ◽  
Yan Zhao ◽  
Wei Xu ◽  
Qingcai Liu ◽  
...  

Abstract Background Maize rough dwarf disease (MRDD), a widespread disease caused by four pathogenic viruses, severely reduces maize yield and grain quality. Resistance against MRDD is a complex trait that controlled by many quantitative trait loci (QTL) and easily influenced by environmental conditions. So far, many studies have reported numbers of resistant QTL, however, only one QTL have been cloned, so it is especially important to map and clone more genes that confer resistance to MRDD. Results In the study, a major quantitative trait locus (QTL) qMrdd2, which confers resistance to MRDD, was identified and fine mapped. qMrdd2, located on chromosome 2, was consistently identified in a 15-Mb interval between the simple sequence repeat (SSR) markers D184 and D1600 by using a recombinant inbred line (RIL) population derived from a cross between resistant (“80007”) and susceptible (“80044”) inbred lines. Using a recombinant-derived progeny test strategy, qMrdd2 was delineated to an interval of 577 kb flanked by markers N31 and N42. We further demonstrated that qMrdd2 is an incompletely dominant resistance locus for MRDD that reduced the disease severity index by 20.4%. Conclusions A major resistance QTL (qMrdd2) have been identified and successfully refined into 577 kb region. This locus will be valuable for improving maize variety resistance to MRDD via marker-assisted selection (MAS).


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhennan Xu ◽  
Feifei Wang ◽  
Zhiqiang Zhou ◽  
Qingchang Meng ◽  
Yanping Chen ◽  
...  

Maize rough dwarf disease (MRDD), caused by a virus, seriously affects maize quality and yield worldwide. MRDD can be most effectively controlled with disease-resistant hybrids of corn. Here, MRDD-resistant (Qi319) and -susceptible (Ye478) parental inbred maize lines and their 314 recombinant inbred lines (RILs) that were derived from a cross between them were evaluated across three environments. A stable resistance QTL, qMrdd2, was identified and mapped using BLUP values to a 0.55 Mb region between the markers MK807 and MK811 on chromosome 2 (B73 RefGen_v3), which was found to explain 8.6 to 11.0% of the total phenotypic variance in MRDD resistance. We validated the effect of qMrdd2 using a chromosome segment substitution line (CSSL) that was derived from a cross between maize inbred Qi319 as the MRDD resistance donor and Ye478 as the recipient. Disease severity index of the CSSL haplotype II harboring qMrdd2 was significantly lower than that of the susceptible parent Ye478. Subsequently, we fine-mapped qMrdd2 to a 315 kb region flanked by the markers RD81 and RD87 by testing recombinant-derived progeny using selfed backcrossed families. In this study, we identified a novel QTL for MRDD-resistance by combining the RIL and CSSL populations, which can be used to breed for MRDD resistant varieties of maize. Keywords: Maize, Maize rough dwarf disease, QTL, Fine-mapping, Recombinant inbred line, Chromosome segment substitution line.


Crops & Soils ◽  
2021 ◽  
Author(s):  
Sudeep Bag ◽  
Phillip M. Roberts ◽  
Robert C. Kemerait

2021 ◽  
Vol 166 (4) ◽  
pp. 1253-1257
Author(s):  
Qiyan Liu ◽  
Jingjing Jin ◽  
Liu Yang ◽  
Song Zhang ◽  
Mengji Cao

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gemma Clemente-Orta ◽  
Ramon Albajes ◽  
Iván Batuecas ◽  
M. A. Achon

AbstractMaize rough dwarf virus (MRDV) is one of the main yield-limiting factors of maize in the Mediterranean. However, knowledge about the interactions between the agroecosystem and the virus–vector–host relationship continues to be limited. We used multi-model inference to test a landscape-scale approach together with variables measured in the field, and we estimated the effects of early and late planting on MRDV incidence. The results revealed that the virus incidence increased by 3% when the planting was delayed, and this increase was coincident with the first peak of the vector population. The variables at the field and landscape scales with a strong effect on virus incidence were the proportions of grasses in adjacent crops, in uncultivated areas, and in edges close to maize plants. Grass plant cover in the edges also affected virus incidence, but these effects varied with the planting period. These findings provide new insights into the causes of MRDV incidence and may provide some guidance to growers to reduce losses caused by the virus. Among the recommendations to be prioritized are early planting, management of grasses at field edges, and non-overlapping cultivation of maize and winter cereals in the same area.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenxi Jia ◽  
Fei Wang ◽  
Jingjing Li ◽  
Xuefei Chang ◽  
Yi Yang ◽  
...  

The green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), is a key insect vector transmitting rice dwarf virus (RDV) that causes rice dwarf disease. We discovered a novel iflavirus from the transcriptomes of N. cincticeps and named it as Nephotettix cincticeps positive-stranded RNA virus-1 (NcPSRV-1). The viral genome consists of 10,524 nucleotides excluding the poly(A) tail and contains one predicted open reading frame encoding a polyprotein of 3,192 amino acids, flanked by 5' and 3' untranslated regions. NcPSRV-1 has a typical iflavirus genome arrangement and is clustered with the members of the family Iflaviridae in the phylogenetic analysis. NcPSRV-1 was detected in all tested tissues and life stages of N. cincticeps and could be transmitted horizontally and vertically. Moreover, NcPSRV-1 had high prevalence in the laboratory populations and was widely spread in field populations of N. cincticeps. NcPSRV-1 could also infect the two-striped leafhopper, Nephotettix apicalis, at a 3.33% infection rate, but was absent in the zigzag leafhopper, Recilia dorsalis, and rice Oryza sativa variety TN1. The infection of RDV altered the viral load and infection rate of NcPSRV-1 in N. cincticeps, for which it seems that RDV has an antagonistic effect on NcPSRV-1 infection in the host.


Author(s):  
Yan Zhao ◽  
Wei Wei ◽  
Robert E. Davis ◽  
Ing-Ming Lee ◽  
Kristi D. Bottner-Parker

Wheat blue dwarf (WBD) is one of the most economically damaging cereal crop diseases in northwestern PR China. The agent associated with the WBD disease is a phytoplasma affiliated with the aster yellows (AY) group, subgroup C (16SrI-C). Since phytoplasma strains within the AY group are ecologically and genetically diverse, it has been conceived that the AY phytoplasma group may consist of more than one species. This communication presents evidence to demonstrate that, while each of the two 16 rRNA genes of the WBD phytoplasma shares >97.5 % sequence similarity with that of the ‘Candidatus Phytoplasma asteris’ reference strain, the WBD phytoplasma clearly represents an ecologically separated lineage: the WBD phytoplasma not only has its unique transmitting vector (Psammotettix striatus) but also elicits a distinctive symptom in its predominant plant host (wheat). In addition, the WBD phytoplasma possesses molecular characteristics that further manifest its significant divergence from ‘Ca. P. asteris’. Such molecular characteristics include lineage-specific antigenic membrane proteins and a lower than 95 % genome-wide average nucleotide identity score with ‘Ca. P. asteris’. These ecological, molecular and genomic evidences justify the recognition of the WBD phytoplasma as a novel taxon, ‘Candidatus Phytoplasma tritici’.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1387
Author(s):  
Mingjun Li ◽  
Xi Sun ◽  
Dianping Di ◽  
Aihong Zhang ◽  
Ling Qing ◽  
...  

Rice black streaked dwarf virus (RBSDV) is an important agent causing maize rough dwarf disease, whereas the host factors responding to RBSDV infection are poorly understood. To uncover the molecular interactions between RBSDV and maize, a yeast two-hybrid screen of a maize cDNA library was carried out using the viral P8 protein as a bait. ZmAKINβγ-1 and ZmAKINβγ-2 (βγ subunit of Arabidopsis SNF1 kinase homolog in maize) possessing high sequence similarities (encoded by two gene copies) were identified as interaction partners. Their interactions with P8 were confirmed in both Nicotiana benthamiana cells and maize protoplasts by bimolecular fluorescence complementation assay. The accumulation levels of ZmAKINβγ mRNAs were upregulated at the stage of the viral symptoms beginning to appear and then downregulated. ZmAKINβγs are putative regulatory subunits of the SnRK1 complex, a core regulator for energy homeostasis. Knockdown of ZmAKINβγs in maize regulated the expression levels of the genes involved in sugar synthesis or degradation, and also the contents of both glucose and sucrose. Importantly, downregulation of ZmAKINβγs expressions facilitated the accumulation of RBSDV in maize. These results implicate a role of ZmAKINβγs in the regulation of primary carbohydrate metabolism, and in the defense against RBSDV infection.


Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3275
Author(s):  
Lindsey D. Thiessen ◽  
Tyler Schappe ◽  
Marcio Zaccaron ◽  
Kassie Conner ◽  
Jenny Koebernick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document