endothelial stiffness
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Yan Yang ◽  
Zhe Sun ◽  
Annayya Aroor ◽  
Liping Zhang ◽  
Guanghong Jia ◽  
...  

Over-nutrition/obesity predisposes persons, particularly women, to endothelial dysfunction and vascular stiffening. We have employed a clinically relevant model using female mice fed a high fat and high fructose diet (western diet, WD). These mice display high plasma aldosterone levels, endothelial stiffness and dysfunction and increased mineralocorticoid receptor (MR) expression in the vasculature. One potential mechanism by which MR activation may promote endothelial stiffness is through increased expression and activation of epithelial sodium channel (EnNaC) in endothelial cells (ECs) through mTOR2 mediated activation of serum and glucocorticoid regulated kinase 1(SGK1). In this investigation we observed that WD feeding in female mice for 16 wks caused endothelial (atomic force microscopy (AFM)), and aortic stiffening (PW analysis) in concert with increased expression of EnNaC and SGK1 in the endothelium and EnNaC activation in ECs. Further, amelioration of WD induced EC and vascular stiffness was accomplished by EnNaC inhibition with low dose amiloride (1mg/kg/day in drinking water) over the 16 wks of WD. We then explored the idea that inhibition of SGK1 as well as specific deletion of ECMR and EnNaC decreases vascular EC stiffness accompanied by decreased sodium current in isolated lung ECs. Accordingly, female wild type and ECMR and EnNaC KO mice were fed a WD or control diet (CD) for 16 wks. Aortic and coronary artery EC stiffness, measured ex vivo by AFM, was increased in WD fed mice and this was prevented in ECMR and EnNaC KO models. Both ECMR and EnNaC KO mice fed a WD showed decreased amiloride sensitive sodium current in isolated ECs. Further, in cultured ECs , inhibition of SGK1 by a chemical inhibitor attenuated aldosterone mediated sodium currents. Collectively, these findings support the notion that a WD promotes ECMR mediated increases in SGK1 and associated EnNaC activity in ECs together with increased endothelial and vascular stiffness in females.


2018 ◽  
Vol 38 (1) ◽  
pp. 64-75 ◽  
Author(s):  
Elizabeth Le Master ◽  
Ru-Ting Huang ◽  
Chongxu Zhang ◽  
Yedida Bogachkov ◽  
Cassandre Coles ◽  
...  

2016 ◽  
Vol 57 (14) ◽  
pp. 5910 ◽  
Author(s):  
Andrea P. Cabrera ◽  
Arun Bhaskaran ◽  
Jun Xu ◽  
Xiao Yang ◽  
Harry A. Scott ◽  
...  

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Javad Habibi ◽  
Annayya R Aroor ◽  
Lixin Ma ◽  
Guanghong Jia ◽  
Adam Whaley-Connell ◽  
...  

Cardiac diastolic dysfunction (DD) and diastolic heart failure is increasing in concert with obesity and aging population in the United States. In obese and diabetic women, DD is more common than in their male counterparts. This disproportionate increase in DD in obese females may partly explain their loss of sex-related cardiovascular (CV) disease protection. Recent studies have suggested a role for endothelial sodium channel (ENaC) activation in promotion of endothelial stiffness and suppression of flow- (nitric oxide) mediated vasodilation. Moreover, increased mineralocorticoid receptor (MR) activation mediated endothelial stiffness is promoted, in part, by ENaC activation. In this regard, we have recently reported increased plasma aldosterone levels, aortic and cardiac stiffness, and cardiac and vascular MR expression in female mice fed a high fat and high fructose diet (western diet [WD]). This increase in CV stiffness was prevented by very low dose MR antagonism. Accordingly, we hypothesized that inhibition of MR-mediated ENaC activation by using a very low dose of the ENaC inhibitor, amiloride would prevent cardiac stiffening (DD) in WD-fed female mice. Four week old C57BL6/J mice were fed a WD containing high fat (46%), sucrose (17.5%), and high fructose corn syrup (17.5%) with or without a very low dose of amiloride (1mg/kg/day) for 16 weeks. Amiloride significantly attenuated WD-induced impairment of cardiac relaxation in vivo as measured by high resolution magnetic resonance imaging (MRI) as well as cardiac interstitial fibrosis as measured by immunohistochemistry by picrosirius red staining. Moreover, amiloride prevented the development of DD in obese female mice without having effects on blood pressure. These observations support a role for ENaC activation in diet-induced cardiac stiffening (DD) in obese females.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Annayya Aroor ◽  
Francisco I Ramirez-Perez ◽  
Guanghong Jia ◽  
Javad Habibi ◽  
Vincent G DeMarco ◽  
...  

Obesity-associated arterial stiffening is an independent predictor of cardiovascular disease (CVD) events. Although premenopausal non-obese women are protected against CVD, aortic stiffening in obese women is more common than in men. This disproportionate increase in vascular stiffness in obese females may partly explain their loss of sex-related CVD protection. Recent studies have suggested a role for endothelial sodium channel (ENaC) activation in promotion of endothelial stiffness and suppression of flow-(nitric oxide) mediated vasodilation. Increased mineralocorticoid receptor (MR) activation mediated endothelial stiffness is promoted, in part, by ENaC activation. In this regard, we have recently reported increased aortic stiffness, MR and ENaC expression and endothelial dysfunction in female mice fed a high fat and high fructose diet (western diet [WD]). This increase in aortic stiffness was prevented by very low dose MR antagonism. Accordingly, we hypothesized that inhibition of MR-mediated ENaC activation by using a very low dose of the ENaC inhibitor, amiloride, would prevent arterial stiffening and vascular dysfunction in WD-fed female mice. Four week old C57BL6/J mice were fed a WD containing high fat (46%), sucrose (17.5%), and high fructose corn syrup (17.5%) with or without a very low dose of amiloride (1mg/kg/day) for 16 weeks. Amiloride significantly attenuated WD-induced increases in aortic stiffness in vivo as measured by pulse wave velocity as well as in vitro endothelial stiffness as measured by atomic force microscopy. Moreover, incubation of aortic explants with very low dose of amiloride (1 μM) inhibited WD-induced aortic stiffness in aorta explants from WD-fed female mice. Amiloride also prevented WD-induced impairment in acetylcholine-induced aortic vasodilatation and flow-mediated dilation in mesenteric arteries. Taken together, these observations support a role for ENaC activation in diet-induced vascular stiffening in obese females.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Vincent G DeMarco ◽  
Annayya Aroor ◽  
Guanghong Jia ◽  
Javad Habibi ◽  
Mona Garro ◽  
...  

Aortic stiffness, endothelial dysfunction and diastolic dysfunction (DD) are cardiovascular (CV) abnormalities seen in obesity associated with consumption of high fat/fructose western diet (WD). Moreover, CV dysfunction is increasingly prevalent in obese women. Herein, we examined whether the DPP-4 inhibitor, linagliptin (LINA), improves these outcomes in WD fed female C57BL/6 mice. Four week old mice were fed control diet (CD) or WD with or without LINA for 16 weeks, after which pulse wave velocity (aortic stiffness) (PWV), echocardiography (diastolic function), atomic force microscopy (endothelial stiffness) and wire myography (aortic vascular reactivity) were performed. Compared to CD mice, WD mice exhibited 21% and 353% higher PWV and endothelial stiffness, respectively. WD induced DD, indicated by impaired septal wall motion (<E’/A’ ratio), left atrial filling pressure (>E/Vp ratio), prolonged isovolumic relaxation time (IVRT) and impaired myocardial performance index (>MPI). These vascular and cardiac abnormalities were prevented by LINA. LINA also prevented WD-induced impairments in acetylcholine-, sodium nitroprusside-, and insulin-mediated aortic vascular relaxation. These results show that LINA exerts CV protection in a translational model of obesity.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Elizabeth LeMaster ◽  
David Eddington ◽  
Michael Cho ◽  
Richard Minshall ◽  
Irena Levitan

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Annayya R Aroor ◽  
Vincent G DeMarco ◽  
Guanghong Jia ◽  
Luis A Martinez-Lemus ◽  
Javad Habibi ◽  
...  

A western diet (WD), high in sucrose and fat, is often accompanied by insulin resistance and cardiovascular disease characterized early by endothelial dysfunction and increased vascular and cardiac stiffness. Recently, Dipeptidyl peptidase-4 (DPP-4) inhibition has been shown to improve diastolic dysfunction in WD fed mice, but its effects on endothelial cell and cardiac stiffness have not been reported. We fed 4-week old C57BL/6 male mice with a WD with or without a DPP-4 inhibitor (MK0626) for 16 weeks and measured blood pressure by telemetry, insulin resistance via (HOMA), in vivo cardiac diastolic function (echocardiography), pulse wave velocity (PWV), and ex vivo aortic endothelial stiffness by atomic force microscopy. Systolic blood pressure and insulin resistance were increased by the WD. DPP-4 inhibition improved systemic insulin sensitivity and substantially reduced DPP-4 activity, but had no effect on 24-hour blood pressures. Heart weight was increased by WD in conjunction with S6 kinase translational signaling and DPP-4 inhibition reduced S6 kinase phosphorylation/activation in conjunction with a reduction in cardiac mass. Aortic stiffness, as assessed by PWV, was significantly increased in WD fed mice (16% increase) and was markedly decreased by DPP-4 inhibition. Endothelial cell stiffness was increased 5-fold in WD fed mice and DPP-4 inhibition significantly decreased endothelial stiffness (80% decrease). Acetylcholine but not sodium nitroprusside mediated vascular relaxation was impaired in WD fed mice and DPP-4 inhibition significantly improved this nitric oxide mediated relaxation. Increased vascular smooth muscle and endothelial stiffness was associated with impaired cardiac diastolic relaxation, which was also significantly improved by DPP-4 inhibition. Taken together, these results show that DPP-4 inhibition improves cardiac and vascular endothelial stiffness and cardiac diastolic dysfunction in a clinically translational mouse model (WD) of over nutrition and insulin resistance.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Antoine Tarjus ◽  
Pia Jeggle ◽  
Céline Fassot ◽  
Soumaya El Moghrabi ◽  
Hans Oberleitner ◽  
...  

The Epithelial Sodium Channel (ENaC) is a key actor in renal sodium homeostasis. The expression of α β γ ENaC subunits has been shown in the endothelium and vascular smooth muscle, suggesting a role in vascular function. We recently demonstrated that endothelial ENaC is involved in aldosterone-modulated endothelial stiffness. It has been proposed that ENaC may act as a mechanosensor, as a member of the degenerin channel family acting as sensors in C. elegans. We hypothesized that the endothelial αENaC subunit is involved in shear stress sensing in the vascular tree. We used mice with conditional αENaC subunit gene inactivation in the endothelium only (Endo-αENaC Knock Out mice) and their controls. Renal function was explored using metabolic cages. Vascular reactivity was assessed by pressure myograph in mesenteric arteries. Endothelial stiffness was analyzed by Atomic Force Microscopy (AFM) in open aortic rings. Renal function and sodium excretion (in basal state and after 1 mM NaCl acute challenge) were not affected, indicating that endothelial ENaC is not involved in sodium balance. Endothelial stiffness was decreased in aorta by acute incubation with benzamil (15min, 1μM) and by the absence of αENaC expression in the endothelium (Cortical stiffness; WT 0.9±0.15, WT Benzamil 0.6±0.10, KO 0.6±0.12, KO Benzamil 0.6±0.11 pN/nm). Ex vivo vascular contraction induced by phenylephrine and potassium chloride were not modified in Endo-αENaC Knock Out mice, nor the vasodilatory response to acetylcholine. Myogenic tone was also similar between the two groups. However, a striking difference was observed regarding flow-mediated vasodilation that is blunted in Endo-αENaC Knock Out mice. Similar results were observed after acute ex vivo benzamil (1μM) treatment in WT mesenteric arteries. In aorta, phosphorylation of eNOS, Akt and Myosin Light Chain were increased in Endo αENaC KO mice as compared to WT (1.00±0.3 vs 2.28±0.2, 1.00±0.1 vs 1.58±0.3, 1.00±0.3 vs 1.65±0.2). Our results demonstrate that the αENaC subunit in endothelial cells is part of the flow-sensing machinery in the vessel. We also showed that in vivo ENaC inhibition (using genetic or pharmacological approaches) reduces endothelial stiffness. Whether these two findings are linked remain to be explored.


Sign in / Sign up

Export Citation Format

Share Document