pain transduction
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 19 (4) ◽  
pp. 37
Author(s):  
E.V. Nikenina ◽  
A.Yu. Abramova ◽  
S.S. Pertsov

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Maria Carla Gerra ◽  
Davide Carnevali ◽  
Inge Søkilde Pedersen ◽  
Claudia Donnini ◽  
Matteo Manfredini ◽  
...  

AbstractObjectivesThe present pilot study aims to investigate DNA methylation changes of genes related to fibromyalgia (FM) development and its main comorbid symptoms, including sleep impairment, inflammation, depression and other psychiatric disorders. Epigenetic modifications might trigger or perpetuate complex interplay between pain transduction/transmission, central pain processing and experienced stressors in vulnerable individuals.MethodsWe conducted DNA methylation analysis by targeted bisulfite NGS sequencing testing differential methylation in 112 genomic regions from leukocytes of eight women with FM and their eight healthy sisters as controls.ResultsTests for differentially methylated regions and cytosines brought focus on the GRM2 gene, encoding the metabotropic glutamate receptor2. The slightly increased DNA methylation observed in the GRM2 region of FM patients may confirm the involvement of the glutamate pathway in this pathological condition. Logistic regression highlighted the simultaneous association of methylation levels of depression and inflammation-related genes with FM.ConclusionsAltogether, the results evidence the glutamate pathway involvement in FM and support the idea that a combination of methylated and unmethylated genes could represent a risk factor to FM or its consequence, more than single genes. Further studies on the identified biomarkers could contribute to unravel the causative underlying FM mechanisms, giving reliable directions to research, improving the diagnosis and effective therapies.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2184
Author(s):  
Hyun-Jung Shin ◽  
Hyo-Seok Na ◽  
Sang-Hwan Do

In terms of antinociceptive action, the main mode of action of magnesium involves its antagonist action at the N-methyl-d-aspartate (NMDA) receptor, which prevents central sensitization and attenuates preexisting pain hypersensitivity. Given the pivotal function of NMDA receptors in pain transduction, magnesium has been investigated in a variety of pain conditions. The oral and parenteral administration of magnesium via the intravenous, intrathecal, or epidural route may alleviate pain and perioperative anesthetic and analgesic requirements. These beneficial effects of magnesium therapy have also been reported in patients with neuropathic pain, such as malignancy-related neurologic symptoms, diabetic neuropathy, postherpetic neuralgia, and chemotherapy-induced peripheral neuropathy. In addition, magnesium treatment is reportedly able to alleviate fibromyalgia, dysmenorrhea, headaches, and acute migraine attacks. Although magnesium plays an evolving role in pain management, better understanding of the mechanism underlying its antinociceptive action and additional clinical studies is required to clarify its role as an adjuvant analgesic.


2019 ◽  
Vol 20 (7) ◽  
pp. 775-788 ◽  
Author(s):  
Amna Khan ◽  
Salman Khan ◽  
Yeong Shik Kim

Pain is a complex multidimensional concept that facilitates the initiation of the signaling cascade in response to any noxious stimuli. Action potential generation in the peripheral nociceptor terminal and its transmission through various types of nociceptors corresponding to mechanical, chemical or thermal stimuli lead to the activation of receptors and further neuronal processing produces the sensation of pain. Numerous types of receptors are activated in pain sensation which vary in their signaling pathway. These signaling pathways can be regarded as a site for modulation of pain by targeting the pain transduction molecules to produce analgesia. On the basis of their anatomic location, transient receptor potential ion channels (TRPV1, TRPV2 and TRPM8), Piezo 2, acid-sensing ion channels (ASICs), purinergic (P2X and P2Y), bradykinin (B1 and B2), α-amino-3-hydroxy-5- methylisoxazole-4-propionate (AMPA), N-methyl-D-aspartate (NMDA), metabotropic glutamate (mGlu), neurokinin 1 (NK1) and calcitonin gene-related peptide (CGRP) receptors are activated during pain sensitization. Various inhibitors of TRPV1, TRPV2, TRPM8, Piezo 2, ASICs, P2X, P2Y, B1, B2, AMPA, NMDA, mGlu, NK1 and CGRP receptors have shown high therapeutic value in experimental models of pain. Similarly, local inhibitory regulation by the activation of opioid, adrenergic, serotonergic and cannabinoid receptors has shown analgesic properties by modulating the central and peripheral perception of painful stimuli. This review mainly focused on various classes of nociceptors involved in pain transduction, transmission and modulation, site of action of the nociceptors in modulating pain transmission pathways and the drugs (both clinical and preclinical data, relevant to targets) alleviating the painful stimuli by exploiting nociceptor-specific channels and receptors.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Ahmad Maqboul ◽  
Bakheet Elsadek

Background. Models of cancer-induced neuropathy are designed by injecting cancer cells near the peripheral nerves. The interference of tissue-resident immune cells does not allow a direct contact with nerve fibres which affects the tumor microenvironment and the invasion process. Methods. Anaplastic tumor-1 (AT-1) cells were inoculated within the sciatic nerves (SNs) of male Copenhagen rats. Lumbar dorsal root ganglia (DRGs) and the SNs were collected on days 3, 7, 14, and 21. SN tissues were examined for morphological changes and DRG tissues for immunofluorescence, electrophoretic tendency, and mRNA quantification. Hypersensitivities to cold, mechanical, and thermal stimuli were determined. HC-030031, a selective TRPA1 antagonist, was used to treat cold allodynia. Results. Nociception thresholds were identified on day 6. Immunofluorescent micrographs showed overexpression of TRPA1 on days 7 and 14 and of CGRP on day 14 until day 21. Both TRPA1 and CGRP were coexpressed on the same cells. Immunoblots exhibited an increase in TRPA1 expression on day 14. TRPA1 mRNA underwent an increase on day 7 (normalized to 18S). Injection of HC-030031 transiently reversed the cold allodynia. Conclusion. A novel and a promising model of cancer-induced neuropathy was established, and the role of TRPA1 and CGRP in pain transduction was examined.


2016 ◽  
Vol 9 (8) ◽  
pp. 1069-1080 ◽  
Author(s):  
Dan M. McEntire ◽  
Daniel R. Kirkpatrick ◽  
Nicholas P. Dueck ◽  
Mitchell J. Kerfeld ◽  
Tyler A. Smith ◽  
...  
Keyword(s):  

2013 ◽  
Vol 6 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Gerry Stephen Oxford ◽  
Joyce Harts Hurley

TRP channels are members of a large family of non-selective cation channels. The family which numbers over 30 is classified into 6 groups based on amino acid sequence homology. TRP channels are distributed in many peripheral tissues as well as central and peripheral nervous system. These channels are important in sensing a wide range of chemical and physical stimuli. Several TRP channels, including TRPV1 and TRPA1 are important in pain transduction pathways. This review will focus on the function of TRP channels in the trigeminovascular system and other anatomical regions which are relevant to migraine. We will discuss the possible role of TRP channels in migraine, including the potential role of TRPV1 in the hypersensitivity and allodynia frequently observed in migraine patients. We will review the status of TRP channel drugs in migraine therapeutics. We will also discuss the possible roles of TRP channels in triggering migraine attacks, a process which is not well-understood.


2010 ◽  
Vol 18 (3) ◽  
pp. 866-871 ◽  
Author(s):  
Meeghan A. Lautner ◽  
Shivani B. Ruparel ◽  
Mayur J. Patil ◽  
Kenneth M. Hargreaves

Sign in / Sign up

Export Citation Format

Share Document