scholarly journals A Green Prospective for Learned Post-processing in Sparse-view Tomographic Reconstruction

Author(s):  
Elena Morotti ◽  
Davide Evangelista ◽  
Elena Loli Piccolomini

Deep Learning is developing interesting tools which are of great interest for inverse imaging applications. In this work, we consider a medical imaging reconstruction task from subsampled measurements, which is an active research field where Convolutional Neural Networks have already revealed their great potential. However, the commonly used architectures are very deep and, hence, prone to overfitting and unfeasible for clinical usages. Inspired by the ideas of the green-AI literature, we here propose a shallow neural network to perform an efficient Learned Post-Processing on images roughly reconstructed by the filtered backprojection algorithm. The results obtained on images from the training set and on unseen images, using both the non-expensive network and the widely used very deep ResUNet show that the proposed network computes images of comparable or higher quality in about one fourth of time.

2021 ◽  
Vol 7 (8) ◽  
pp. 139
Author(s):  
Elena Morotti ◽  
Davide Evangelista ◽  
Elena Loli Piccolomini

Deep Learning is developing interesting tools that are of great interest for inverse imaging applications. In this work, we consider a medical imaging reconstruction task from subsampled measurements, which is an active research field where Convolutional Neural Networks have already revealed their great potential. However, the commonly used architectures are very deep and, hence, prone to overfitting and unfeasible for clinical usages. Inspired by the ideas of the green AI literature, we propose a shallow neural network to perform efficient Learned Post-Processing on images roughly reconstructed by the filtered backprojection algorithm. The results show that the proposed inexpensive network computes images of comparable (or even higher) quality in about one-fourth of time and is more robust than the widely used and very deep ResUNet for tomographic reconstructions from sparse-view protocols.


SLEEP ◽  
2019 ◽  
Vol 42 (11) ◽  
Author(s):  
Linda Zhang ◽  
Daniel Fabbri ◽  
Raghu Upender ◽  
David Kent

Abstract Study Objectives Polysomnography (PSG) scoring is labor intensive and suffers from variability in inter- and intra-rater reliability. Automated PSG scoring has the potential to reduce the human labor costs and the variability inherent to this task. Deep learning is a form of machine learning that uses neural networks to recognize data patterns by inspecting many examples rather than by following explicit programming. Methods A sleep staging classifier trained using deep learning methods scored PSG data from the Sleep Heart Health Study (SHHS). The training set was composed of 42 560 hours of PSG data from 5213 patients. To capture higher-order data, spectrograms were generated from electroencephalography, electrooculography, and electromyography data and then passed to the neural network. A holdout set of 580 PSGs not included in the training set was used to assess model accuracy and discrimination via weighted F1-score, per-stage accuracy, and Cohen’s kappa (K). Results The optimal neural network model was composed of spectrograms in the input layer feeding into convolutional neural network layers and a long short-term memory layer to achieve a weighted F1-score of 0.87 and K = 0.82. Conclusions The deep learning sleep stage classifier demonstrates excellent accuracy and agreement with expert sleep stage scoring, outperforming human agreement on sleep staging. It achieves comparable or better F1-scores, accuracy, and Cohen’s kappa compared to literature for automated sleep stage scoring of PSG epochs. Accurate automated scoring of other PSG events may eventually allow for fully automated PSG scoring.


Author(s):  
Andrei Agrachev ◽  
Andrey Sarychev

AbstractDeep learning of the artificial neural networks (ANN) can be treated as a particular class of interpolation problems. The goal is to find a neural network whose input-output map approximates well the desired map on a finite or an infinite training set. Our idea consists of taking as an approximant the input-output map, which arises from a nonlinear continuous-time control system. In the limit such control system can be seen as a network with a continuum of layers, each one labelled by the time variable. The values of the controls at each instant of time are the parameters of the layer.


2021 ◽  
Vol 13 (18) ◽  
pp. 3647
Author(s):  
Ghizlane Karara ◽  
Rafika Hajji ◽  
Florent Poux

Semantic augmentation of 3D point clouds is a challenging problem with numerous real-world applications. While deep learning has revolutionised image segmentation and classification, its impact on point cloud is an active research field. In this paper, we propose an instance segmentation and augmentation of 3D point clouds using deep learning architectures. We show the potential of an indirect approach using 2D images and a Mask R-CNN (Region-Based Convolution Neural Network). Our method consists of four core steps. We first project the point cloud onto panoramic 2D images using three types of projections: spherical, cylindrical, and cubic. Next, we homogenise the resulting images to correct the artefacts and the empty pixels to be comparable to images available in common training libraries. These images are then used as input to the Mask R-CNN neural network, designed for 2D instance segmentation. Finally, the obtained predictions are reprojected to the point cloud to obtain the segmentation results. We link the results to a context-aware neural network to augment the semantics. Several tests were performed on different datasets to test the adequacy of the method and its potential for generalisation. The developed algorithm uses only the attributes X, Y, Z, and a projection centre (virtual camera) position as inputs.


Author(s):  
Mr. P. Siva Prasad ◽  
Dr. A. Senthilrajan

Deep learning is now an active research area. Deep learning has done a success in computer vision and image recognition. It is a subset of the Machine Learning. In Deep learning, Convolutional Neural Network (CNN) is popular deep neural network approach. In this paper, we have addressed that how to extract useful leaf features automatically from the leaf dataset through Convolutional Neural Networks (CNN) using Deep Learning. In this paper, we have shown that the accuracy obtained by CNN approach is efficient when compared to accuracy obtained by the traditional neural network.


2021 ◽  
Vol 11 (14) ◽  
pp. 6483
Author(s):  
Fadi Aldakheel ◽  
Ramish Satari ◽  
Peter Wriggers

This work addresses an efficient neural network (NN) representation for the phase-field modeling of isotropic brittle fracture. In recent years, data-driven approaches, such as neural networks, have become an active research field in mechanics. In this contribution, deep neural networks—in particular, the feed-forward neural network (FFNN)—are utilized directly for the development of the failure model. The verification and generalization of the trained models for elasticity as well as fracture behavior are investigated by several representative numerical examples under different loading conditions. As an outcome, promising results close to the exact solutions are produced.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tom Struck ◽  
Javed Lindner ◽  
Arne Hollmann ◽  
Floyd Schauer ◽  
Andreas Schmidbauer ◽  
...  

AbstractEstablishing low-error and fast detection methods for qubit readout is crucial for efficient quantum error correction. Here, we test neural networks to classify a collection of single-shot spin detection events, which are the readout signal of our qubit measurements. This readout signal contains a stochastic peak, for which a Bayesian inference filter including Gaussian noise is theoretically optimal. Hence, we benchmark our neural networks trained by various strategies versus this latter algorithm. Training of the network with 106 experimentally recorded single-shot readout traces does not improve the post-processing performance. A network trained by synthetically generated measurement traces performs similar in terms of the detection error and the post-processing speed compared to the Bayesian inference filter. This neural network turns out to be more robust to fluctuations in the signal offset, length and delay as well as in the signal-to-noise ratio. Notably, we find an increase of 7% in the visibility of the Rabi oscillation when we employ a network trained by synthetic readout traces combined with measured signal noise of our setup. Our contribution thus represents an example of the beneficial role which software and hardware implementation of neural networks may play in scalable spin qubit processor architectures.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. V333-V350 ◽  
Author(s):  
Siwei Yu ◽  
Jianwei Ma ◽  
Wenlong Wang

Compared with traditional seismic noise attenuation algorithms that depend on signal models and their corresponding prior assumptions, removing noise with a deep neural network is trained based on a large training set in which the inputs are the raw data sets and the corresponding outputs are the desired clean data. After the completion of training, the deep-learning (DL) method achieves adaptive denoising with no requirements of (1) accurate modelings of the signal and noise or (2) optimal parameters tuning. We call this intelligent denoising. We have used a convolutional neural network (CNN) as the basic tool for DL. In random and linear noise attenuation, the training set is generated with artificially added noise. In the multiple attenuation step, the training set is generated with the acoustic wave equation. The stochastic gradient descent is used to solve the optimal parameters for the CNN. The runtime of DL on a graphics processing unit for denoising has the same order as the [Formula: see text]-[Formula: see text] deconvolution method. Synthetic and field results indicate the potential applications of DL in automatic attenuation of random noise (with unknown variance), linear noise, and multiples.


Sign in / Sign up

Export Citation Format

Share Document