zircon core
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Lanita Gutieva ◽  
Annika Dziggel ◽  
Silvia Volante ◽  
Tim Johnson

<p>The Lewisian Gneiss Complex (LGC) in NW Scotland, a classic example of Archean lower crust, is mostly composed of deformed and metamorphosed tonalite–trondhjemite–granodiorite (TTG) gneisses, gneissose granite sheets, and subordinate mafic, ultramafic, and metasedimentary lithologies. It has been traditionally subdivided into three regions that are interpreted to record discrete ages and metamorphic histories, and which are separated by crustal-scale shear zones. A smear of concordant U–Pb zircon ages from the granulite-facies central region has been interpreted to record metamorphic resetting of earlier magmatic and granulite facies metamorphic ages during a subsequent high-temperature metamorphic event. Here, we present U–Pb and Hf isotope data collected via laser-ablation split-stream (LASS) analyses of zircon cores from twenty-seven felsic meta-igneous rocks from the northern, southern, and central regions of the LGC, as well as U–Pb data from zircon rims within most of those samples.</p><p>In samples from the northern and southern regions, the crystallization age (i.e., from zircon cores) was calculated from the upper-intercept age, yielding age range of 2.82-2.63 Ga for the northern, and 3.11–2.63 Ga for the southern region. Zircons in these samples generally have thin or no rims, suggesting an absence of a prolonged high-grade (granulite facies) metamorphic event in those regions. In the central region, zircon cores yield U–Pb crystallization ages between ca. 3.0 Ga and 2.7 Ga, while zircon rims define a continuous spread of ages from ca. 2.8 to 2.4 Ga. Overall, the central region exhibits a continuous and overlapping smear of zircon core and rim ages, suggesting a protracted thermal event in which high-ultrahigh temperature conditions were maintained for >200 m.y., and that discrete magmatic and metamorphic ‘events’ are difficult to identify. Nevertheless, an estimation of the crystallization age of each sample is crucial for interpreting their Lu–Hf isotopic signature. Zircon cores from the tonalite–trondhjemite gneisses have broadly chondritic compositions with a range of calculated mean initial εHf of +2.5 to –1.2, potentially reflecting a mixture of juvenile material and reworked crust, with one outlier at εHf<sub>i</sub> = +4.5 perhaps indicating a renewed influx of juvenile magma. Granite gneisses also have near-chondritic values, although the range is larger and the two youngest granite gneisses have slightly sub-chondritic εHf<sub>i</sub> (–1.5 and –2.5), which indicates that pre-existing crust was involved in their formation. Since there is no significant difference in the Hf isotopic composition between rocks from the three regions, or between the TTG and granite gneisses, we suggest that the broadly chondritic εHf<sub>i</sub> in most of our samples reflects mixing of both depleted mantle and evolved crust during their generation. Despite the similarity of the U-Pb and εHf data from the three regions, the data do not allow to unambiguously discriminate whether the LGC is composed of different levels of a once continuous Archean continent or discrete microcontinents that were amalgamated in the late Archean to Paleoproterozoic.</p>


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 198
Author(s):  
Xiao-Dong Chen ◽  
Bin Li ◽  
Chong-Bo Sun ◽  
Hong-Bing Zhou

Calc-alkaline andesitic rocks are a major product of subduction-related magmatism at convergent margins. Where these melts are originated, how long they are stored in the magma chambers, and how they evolved is still a matter of debate. In this study, we present new data of whole-rock elemental and Sr-Nd-Pb isotope compositions, and zircon U-Pb-Th isotopes and trace element contents of Nageng (basaltic-)andesites in the East Kunlun Orogen (NW China). The similar age and whole-rock elemental and Sr-Nd-Pb isotope contents suggest that the Nageng andesite and basaltic andesite are co-magmatic. Their low initial 87Sr/86Sr (0.7084–0.7086) but negative εNd(t) values (−10.61 to −9.49) are consistent with a magma source from the juvenile mafic lower crust, possibly related to the mantle wedge with recycled sediment input. The U-Pb age gap between the zircon core (ca. 248 Ma) and rim (ca. 240 Ma) reveals a protracted magma storage (~8 Myr) prior to the volcanic eruption. When compared to the zircon rims, the zircon cores have higher Ti content and Zr/Hf and Nb/Ta ratios, but lower Hf content and light/heavy rare earth element ratios, which suggests that the parental magma was hotter and less evolved than the basaltic andesite. The plagioclase accumulation likely resulted in Al2O3-enrichment and Fe-depletion, forming the calc-alkaline signature of the Nageng (basaltic-)andesites. The magma temperature, as indicated by the zircon saturation and Ti-in-zircon thermometry, remained low (725–828 °C), and allowed for the magma chamber to survive over ~8 Myr. The decreasing εHf(t) values from zircon core (avg. 0.21, range: −1.28 to 1.32) to rim (avg. −3.68, range: −7.30 to −1.13), together with the presence of some very old xenocrystic zircons (268–856 Ma), suggest that the magma chamber had undergone extensive crustal contamination.


2020 ◽  
Author(s):  
Emese Pánczél ◽  
Maurizio Petrelli ◽  
Réka Lukács ◽  
Szabolcs Harangi

<p>Long-dormant volcanoes (quiescence time is several 100’s to 10’s thousand years between eruptions) pose a particular hazard, since the long repose time decreases the awareness and there is mostly a lack of monitoring. The Haramul Mic, a pancake-shaped flat dacitic lava dome is part of the Ciomadul Volcanic Complex in eastern-central Europe (Romania) and serves as an excellent example of such volcanoes. The Haramul Mic lava dome is the earliest product of the Young Ciomadul Eruption Period (YCEP), when the activity recrudesced in the area after about 200.000 years quiescence time. Eruption age of the dome determined by (U-Th)/He dating on zircon gave 154 +/- 16 ka that is in agreement with the youngest zircon U-Th outer rim date (142 +18/-16 ka). In the YCEP zircon crystallization dates record typically long, up to 350-400 kyr lifetime of the magmatic plumbing system, in case of  Haramul Mic the oldest zircon core is 306 +/- 37 ka old.</p><p>The 880.7 m high lava dome covers an area of 1.1 km<sup>2</sup> and has a volume of ~0.15 km<sup>3</sup>. It is composed of crystal-rich homogeneous high-K dacite. The average crystal content is 35-40% and consists of plagioclase, amphibole, biotite and accessory zircon, apatite, titanite and Fe-Ti oxides. The groundmass is mainly built up by perlitic glass with some microlites. The dacite includes mafic enclaves having plagioclase and amphibole besides a large amount of biotite crystals, that eventuates K-rich, shoshonitic bulk composition. The dacite contains abundant felsic crystal clots which comprise plagioclase, amphibole, biotite and interstitial vesicular glass.</p><p>Amphiboles are relatively homogeneous in chemical composition. They are low-Al hornblendes suggesting 700-800 <sup>o</sup>C crystallization condition at 200-300 MPa compared with experimental data. Al-in-hornblende geobarometer and amphibole-plagioclase geothermometer calculations give results reproducing these temperature and pressure ranges. Although the Kis-Haram dacite is fairly rich in 25-45 anorthite mol% plagioclase, no negative Eu anomaly can be observed in the bulk rock and the glass. Similarities between Fish Canyon Tuff and Kis-Haram rocks can be strikingly noted regarding the major and trace element contents of mineral phases, glass and bulk rock that all refer to a wet oxidised calc-alkaline magmatic system. The relatively small volume Kis-Haram lava dome represents a rejuvenated low-temperature granodioritic crystal mush having similar features as the large volume silicic eruption of Fish Canyon Tuff. Their recorded almost similarly long zircon crystallization intervals give an interesting aspect with regard to the thermal evolution of the magmatic system and eruption volumes.</p><p>This research was financed by the Hungarian National Research, Development and Innovation Fund (NKFIH) within No. K116528 project and was supported by the ÚNKP-19-1 New National Excellence Program of the Ministry for Innovation and Technology.</p>


Geosphere ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 567-593 ◽  
Author(s):  
Graham M. Soto-Kerans ◽  
Daniel F. Stockli ◽  
Xavier Janson ◽  
Timothy F. Lawton ◽  
Jacob A. Covault

Abstract The sedimentary fill of peripheral foreland basins has the potential to preserve a record of the processes of ocean closure and continental collision, as well as the long-term (i.e., 107–108 yr) sediment-routing evolution associated with these processes; however, the detrital record of these deep-time tectonic processes and the sedimentary response have rarely been documented during the final stages of supercontinent assembly. The stratigraphy within the southern margin of the Delaware Basin and Marathon fold and thrust belt preserves a record of the Carboniferous–Permian Pangean continental assembly, culminating in the formation of the Delaware and Midland foreland basins of North America. Here, we use 1721 new detrital zircon (DZ) U-Pb ages from 13 stratigraphic samples within the Marathon fold and thrust belt and Glass Mountains of West Texas in order to evaluate the provenance and sediment-routing evolution of the southern, orogen-proximal region of this foreland basin system. Among these new DZ data, 85 core-rim age relationships record multi-stage crystallization related to magmatic or metamorphic events in sediment source areas, further constraining source terranes and sediment routing. Within samples, a lack of Neoproterozoic–Cambrian zircon grains in the pre-orogenic Mississippian Tesnus Formation and subsequent appearance of this zircon age group in the syn-orogenic Pennsylvanian Haymond Formation point toward initial basin inversion and the uplift and exhumation of volcanic units related to Rodinian rifting. Moreover, an upsection decrease in Grenvillian (ca. 1300–920 Ma) and an increase in Paleozoic zircons denote a progressive provenance shift from that of dominantly orogenic highland sources to that of sediment sources deeper in the Gondwanan hinterland during tectonic stabilization. Detrital zircon core-rim age relationships of ca. 1770 Ma cores with ca. 600–300 Ma rims indicate Amazonian cores with peri-Gondwanan or Pan-African rims, Grenvillian cores with ca. 580 Ma rims are correlative with Pan-African volcanism or the ca. 780–560 Ma volcanics along the rifted Laurentian margin, and Paleozoic core-rim age relationships are likely indicative of volcanic arc activity within peri-Gondwana, Coahuila, or Oaxaquia. Our results suggest dominant sediment delivery to the Marathon region from the nearby southern orogenic highland; less sediment was delivered from the axial portion of the Ouachita or Appalachian regions suggesting that this area of the basin was not affected by a transcontinental drainage. The provenance evolution of sediment provides insights into how continental collision directs the dispersal and deposition of sediment in the Permian Basin and analogous foreland basins.


2019 ◽  
Vol 2 (1) ◽  
pp. 96-101
Author(s):  
Tran Van Thanh ◽  
Pham Trung Hieu

Muong Lat granitoid complex located in Thanh Hoa province. It is composed of two mica granite, aplite and pegmatoid. Rock forming minerals include mainly K-feldspar, quartz biotite and muscovite. Crystallization age of pegmatite in Muong Lat body is determined by U-Pb zircon LA-ICP-MS method. Most of the analytical results 206Pb age / 238U ranged from 217–238 Ma, average 230 ± 7 Ma. Age results indicate, the existence magma activity in the study area. Three inherited zircon core gaves age of ~2.8Ga, ~2.4Ga, ~1.8Ga, ~400Ma and ~750 Ma, suggesting that the continental crust of the study area including material composition of the Neoarchean, Paleoproterozoic, Paleozoic and Neoproterozoic


1992 ◽  
Vol 29 (11) ◽  
pp. 2341-2346 ◽  
Author(s):  
N. Machado ◽  
M. Carneiro

The São Francisco craton in eastern Brazil is one of the major shield areas in South America. In the Quadrilátero Ferrífero area (southern sector of the craton) the Archean Rio das Velhas greenstone belt is surrounded by granite–gneiss terrane and is overlain by Proterozoic sedimentary successions. The Bonfim Metamorphic Complex is the only area of the granite–gneiss terrane adjacent to the greenstone belt that has been mapped. It comprises two gneissic units, tonalites, and late granitic dykes, which crosscut the regional north–south shear fabric. Samples of gneiss, two tonalites and a granitic dyke were dated by U–Pb. A zircon core from the Alberto Flores gneiss yielded a minimum age of 2920 Ma, whereas the overgrowth is concordant at 2772 ± 6 Ma. Two tonalites from the vicinity of Serra da Moeda are [Formula: see text] old, and a late dyke yielded an age of [Formula: see text]. These data, together with previously published U–Pb ages, show that (i) greenstone belt volcanism was coeval with granitoid intrusion and with metamorphism of older units in the granite–gneiss terrane at ca. 2780 Ma and (ii) the main crust-forming event in the Quadrilátero Ferrífero area is about 2780 Ma old. Clear evidence is now available indicating that older magmatism is 2.8–3.2 Ga old. In addition, the last Archean deformation must have occurred in the interval 2780–2703 Ma. Finally, the presence of 2774 ± 6 Ma titanite in the tonalites indicates that the metamorphism associated with the Trans-Amazonian orogeny (ca. 2.0 Ga) did not reach amphibolite facies in the study area.


Sign in / Sign up

Export Citation Format

Share Document