scholarly journals Optimization Design of RV Reducer Crankshaft Bearing

2020 ◽  
Vol 10 (18) ◽  
pp. 6520
Author(s):  
Jian Huang ◽  
Chaoyang Li ◽  
Bingkui Chen

The crankshaft bearing is the key component of a rotate vector (RV) reducer. However, owing to the harsh working load and restricted available space, the bearing often suffers from fatigue failure. Therefore, this study proposes a novel optimization method for RV reducer crankshaft bearings. A nonlinear constraint optimization model for the design of the bearing considering the crowned roller profile is formulated and is solved by using a crow search algorithm. The goal of the optimization is to maximize the fatigue life of the bearing. The design variables corresponding to the bearing geometry and crowned roller profile are considered. The load working conditions of the bearing and structure of the RV reducer are analyzed. Various constraints, including geometry, lubrication, strength of the bearing, and structure of the RV reducer, are established. Through the optimization design, the optimum crowned roller profile suitable for the working load of the bearing is obtained, and the stress concentration between the roller and raceway is eliminated. Taking the crankshaft bearing of RV-20E and RV-110E type reducers as examples, the bearings were optimized by the proposed method. After optimization, the bearing life of the RV-20E type reducer is increased by 196%, and the bearing life of the RV-110E type reducer is increased by 168%.

2013 ◽  
Vol 655-657 ◽  
pp. 435-444
Author(s):  
Dong Xia Niu ◽  
Xian Yi Meng ◽  
Ai Hua Zhu

In the case of multiple loading conditions, a moving blade adjustable axial flow fan structure parameters are optimized by ANSYS. It is to achieve greater efficiency and less noise for the optimization goal. For different conditions, establish efficiency, noise comprehensive objective function using weighted coefficient method. Select impeller diameter, the wheel hub ratio, leaf number, lift coefficient, speed as design variables, Choose blade installation Angle, the wheel hub place dynamic load coefficient, cascade consistency, allowable safety coefficient as optimization of the state variables. Design variables contain continuous variables and discrete variable. Through the optimization method, we get the optimal structure parameters finally. And at the same time get the corresponding optimal blade installation Angle,under different working conditions.


2014 ◽  
Vol 721 ◽  
pp. 464-467
Author(s):  
Tao Fu ◽  
Qin Zhong Gong ◽  
Da Zhen Wang

In view of robustness of objective function and constraints in robust design, the method of maximum variation analysis is adopted to improve the robust design. In this method, firstly, we analyses the effect of uncertain factors in design variables and design parameters on the objective function and constraints, then calculate maximum variations of objective function and constraints. A two-level optimum mathematical model is constructed by adding the maximum variations to the original constraints. Different solving methods are used to solve the model to study the influence to robustness. As a demonstration, we apply our robust optimization method to an engineering example, the design of a machine tool spindle. The results show that, compared with other methods, this method of HPSO(hybrid particle swarm optimization) algorithm is superior on solving efficiency and solving results, and the constraint robustness and the objective robustness completely satisfy the requirement, revealing that excellent solving method can improve robustness.


2012 ◽  
Vol 457-458 ◽  
pp. 60-64 ◽  
Author(s):  
Hua Long Xie ◽  
Hui Min Guo ◽  
Qing Bao Wang ◽  
Yong Xian Liu

The optimization of spindle has important significance. The optimization method based on ANSYS is introduced and spindle mathematical mode of HTC3250µn NC machine tool is given. By scanning of design variables, the main optimized design variables are determined. The single objective and multi-objective optimizations are done. In the end, the main size comparison of spindle before and after optimization is given.


2011 ◽  
Vol 415-417 ◽  
pp. 460-463
Author(s):  
Li Liu ◽  
Hong Xia Liu

In the design of wrapping hoist, the roller strength is always a larger problem. In this paper, diameter, wall thickness and side plate thickness of the roller were selected as design variables, and volume of the roller acts as object function. Through analyzing its inner stresses, the mechanical model and mathematical model were set up. Adopting the optimization method of covering complex and VB programming software, an application software of a hoist roller optimization design was got. An example is used to verify correctness and practicability of the software. This optimization design method has practical significance on reducing the weight and material of a hoist roller.


2012 ◽  
Vol 479-481 ◽  
pp. 1963-1967
Author(s):  
Ling Long ◽  
Chao Song ◽  
Guo Fu Yin

A new kind of swarm intelligence algorithm called stochastic focusing search(SFS) is proposed and applied to optimize sheet metal forming process in this paper. The steps of the optimization procedure include combining numerical simulation technology with orthogonal experiments to provide training samples for BP net, and producing the fitted function as optimization function for SFS algorithm. The validation of the final optimization results by a rectangular box part stamping case shows that this kind of optimization methodology is correct and reliable for the design of deep drawing process. Advantages of the SFS algorithm are demonstrated that SFS has good global searching ability and fast convergence speed in finding optimal solutions, which means the optimization method using SFS algorithm can provide a competitive way of solving the optimization design problems in sheet metal forming.


Author(s):  
Yu Yang ◽  
Zhigang Wang ◽  
Binwen Wang ◽  
Shuaishuai Lyu

Wing's morphing leading edge, drooping in a seamless way, has significant potential for noise abatement and drag reduction. Innovative design methods for compliant skin and internal actuating mechanism, respectively, are proposed and validated through a mockup in this paper. For the skin, a collaborative optimization method is presented, which takes all design variables, continuous and discrete, into account simultaneously. Moreover, to overcome the drawback of conventional algorithm, which is insufficient for deformation control in critical regime, weight penalty is imposed on present objective function. On the other hand, an internal kinematic actuating mechanism is designed from an improved concept, of which positions of level-rod hinges are optimized in a larger zone to fit the deflection requirement. The test of mockup validates the above methods, and excellent morphing quality of the compliant skin proves the advancement of the collaborative optimization method. However, the design method of internal actuating mechanism needs further improvement, and the error induced deteriorates the final morphing quality of the mockup.


2010 ◽  
Vol 171-172 ◽  
pp. 252-255 ◽  
Author(s):  
Qing Zhou ◽  
Xin Tao Xia ◽  
Ya Ping Zhang

Working conditions, characteristics, and development about the mainshaft bearing for wind turbines are investigated and mathematical model based on the rated dynamic load is proposed in this paper. With the help of the nonlinearly minimum function, viz., fmincon, in MATLAB toolbox, the constrained optimization method for the main parameters of the bearing is studied in order to improve the bearing life.


2010 ◽  
Vol 139-141 ◽  
pp. 1464-1467 ◽  
Author(s):  
Ji Hong Zhu ◽  
Wei Hong Zhang ◽  
Xiao Jun Gu

The purpose of this paper is to avoid the crack problem of the ceramic shell during the burnout procedure of the rapid investment casting using stereolithograghy (SLA) model. Since the coefficient of thermal expansion of the SLA model is much higher than the coefficient of the ceramic shell, the internal structural patterns have to be properly designed to reduce the stress level in the ceramic shell. A topology optimization method is proposed here to find better microstructure designs to satisfy both the strength of the ceramic shell and the stiffness of the SLA model itself. Taking the arrayed microstructure into account, the pseudo-densities of the SLA model elements to describe the material layout are defined and assumed as the design variables. By deriving the design sensitivities, the topology optimization problem is solved with reasonable numerical results generated.


2011 ◽  
Vol 50-51 ◽  
pp. 135-139
Author(s):  
Tie Yi Zhong ◽  
Chao Yi Xia ◽  
Feng Li Yang

Based on optimization theories, considering soil-structure interaction and running safety, the optimal design model of the seismic isolation system with lead-rubber bearings (LRB) for a simply supported railway beam bridge is established by using the first order optimization method in ANSYS, which the parameters of the isolation bearing are taken as design variables and the maximum moments at the bottom of bridge piers are taken as objective functions. The optimal calculations are carried out under the excitation of three practical earthquake waves respectively. The research results show that the ratio of the stiffness after yielding to the stiffness before yielding has important effect on the structural seismic responses. Through the optimal analysis of isolated bridge system, the optimal design parameters of isolation bearing can be determined properly, and the seismic forces can be reduced maximally as meeting with the limits of relative displacement between pier top and beam, which provides efficient paths and beneficial references for dynamic optimization design of seismic isolated bridges.


2013 ◽  
Vol 357-360 ◽  
pp. 2410-2413
Author(s):  
Wei Xu ◽  
Jian Sheng Feng ◽  
Fei Fei Feng

The primary object of this fundamental research is to reveal the application of genetic algorithm improved on the optimization design of cantilever supporting structure. In order to meet the strength of pile body and pile top displacement as well as design variables subjected to constraint, an algorithm is carried on to seek the optimum solution and relevant examples by means of comprehensively considering the effects on center-to-center spacing between piles,pile diameter and quantity of distributed steel, which is taken the lowest engineering cost as objective function. Through the comparison of the optimized scheme and original design, this fruitful work provides explanation to the effectiveness of genetic algorithm in optimization design. These findings of the research lead to the conclusion that the shortcomings of traditional design method is easy to fall into local optimal solution. The new optimization method can overcome this drawback.


Sign in / Sign up

Export Citation Format

Share Document