run timing
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Stuart C. Willis ◽  
Jon E. Hess ◽  
Jeff K. Fryer ◽  
John M. Whiteaker ◽  
Shawn R. Narum

2020 ◽  
Vol 111 (6) ◽  
pp. 548-563
Author(s):  
Samantha H Kannry ◽  
Sean M O’Rourke ◽  
Suzanne J Kelson ◽  
Michael R Miller

Abstract The preservation of life history and other phenotypic complexity is central to the resilience of Pacific salmon stocks. Steelhead (Oncorhynchus mykiss) express a diversity of life-history strategies such as the propensity to migrate (anadromy/residency) and the timing and state of maturation upon return to freshwater (run-timing), providing an opportunity to study adaptive phenotypic complexity. Historically, the Eel River supported upwards of 1 million salmon and steelhead, but the past century has seen dramatic declines of all salmonids in the watershed. Here we investigate life-history variation in Eel River steelhead by using Rapture sequencing, on thousands of individuals, to genotype the region diagnostic for run-timing (GREB1L) and the region strongly associated with residency/anadromy (OMY5) in the Eel River and other locations, as well as determine patterns of overall genetic differentiation. Our results provide insight into many conservation-related issues. For example, we found that distinct segregation between winter and summer-run steelhead correlated with flow-dependent barriers in major forks of the Eel, that summer-run steelhead inhabited the upper Eel prior to construction of an impassable dam, and that both life history and overall genetic diversity have been maintained in the resident trout population above; and we found no evidence of the summer-run allele in the South Fork Eel, indicating that summer run-timing cannot be expected to arise from standing genetic variation in this and other populations that lack the summer-run phenotype. The results presented in this study provide valuable information for designing future restoration and management strategies for O. mykiss in Northern California and beyond.


Author(s):  
Randy J. Brown ◽  
Catherine Bradley ◽  
Jeffery L. Melegari

Abstract An essential management objective of the Yukon Delta and Koyukuk National Wildlife Refuges in Alaska is to conserve fish and wildlife populations and habitats in their natural diversity. In keeping with this objective, the U.S. Fish and Wildlife Service installed weirs in two tributaries of the Yukon River, the East Fork Andreafsky and Gisasa rivers, in 1994 to collect information on salmon populations that used them. The weirs have been in operation for >23 y. Chinook Oncorhynchus tshawytscha and summer Chum Salmon O. keta were counted and sampled for various demographic data each year as they migrated through the weirs to upstream spawning areas. Here we examine this record of population data to describe and compare long-term variation in run abundance, run timing, length and age structure, sex composition, and production for these salmon populations. Fishery managers often look to multiple monitoring projects in-season seeking corroboration of observed run qualities; therefore, we also considered whether Yukon River main-stem indicators of abundance were correlated with these tributary escapements. Our analyses suggest long-term stability of these populations despite large annual variations in most metrics we examined. Annual escapements have varied by factors of 3–5 for Chinook Salmon and >23 for summer Chum Salmon, yet only the Chinook Salmon population in the Gisasa River appears to be declining. Main-stem abundance indicators were not correlated with Chinook Salmon escapements but were strongly correlated with summer Chum Salmon escapements. Run timing has varied annually by as much as a week earlier or later than average for all four populations with no trend over time. Mean age of the Chinook Salmon populations declined over time but remained stable for the summer Chum Salmon populations. Chinook Salmon populations in the East Fork Andreafsky and Gisasa rivers averaged 35% and 28% female, respectively. Both summer Chum Salmon populations averaged close to 50% female. Length at age has been stable or slightly declining for all four populations. Production over time was strongly correlated within species for populations in the two rivers, and averaged >1 recruit/spawner for all populations except Chinook Salmon from the Gisasa River. We discuss these findings in the context of major changes in the fishery and the environments these populations experience.


2020 ◽  
Author(s):  
Samantha H. Kannry ◽  
Sean M. O’Rourke ◽  
Suzanne J Kelson ◽  
Michael R Miller

AbstractPreservation of life-history and other phenotypic complexity is central to the resilience of Pacific salmon stocks. Steelhead (Oncorhynchus mykiss) express a diversity of life history strategies such as the propensity to migrate (anadromy/residency) and the timing and state of maturation upon return to freshwater (run-timing), providing an opportunity to study adaptive phenotypic complexity. Historically, the Eel River supported upwards of one million salmon and steelhead, but the past century has seen dramatic declines of all salmonids in the watershed. Here we investigate life history variation in Eel River steelhead by using Rapture sequencing, on thousands of individuals, to genotype the region diagnostic for run-timing (GREB1L) and the region strongly associated with residency/anadromy (OMY5) in the Eel River and other locations, as well as determine patterns of overall genetic differentiation. Our results provide insight into many conservation related issues. For example, we found distinct segregation between winter and summer-run steelhead correlated with flow dependent barriers in major forks of the Eel; that summer-run steelhead inhabited the upper Eel prior to construction of an impassable dam, and that both life-history and overall genetic diversity have been maintained in the resident trout population above; and no evidence of the summer-run allele in the South Fork Eel, indicating that summer run-timing cannot be expected to arise from standing genetic variation in this and other populations that lack the summer-run phenotype. The results presented in this study provide valuable information for designing future restoration and management strategies for O. mykiss in Northern California and beyond.


2019 ◽  
Vol 76 (10) ◽  
pp. 1719-1727
Author(s):  
Benjamin A. Staton ◽  
Matthew J. Catalano

Preseason forecasts of Pacific salmon run size are notoriously uncertain and are thus often updated using various abundance indices collected during the run. However, interpretation of these in-season indices is confounded by uncertainty in migration timing. We assessed the performance of two Bayesian information-updating procedures for Kuskokwim River Chinook salmon (Oncorhynchus tshawytscha), one that uses auxiliary run timing information and one that does not, and compared the performance with methods that did not involve updating. We found that in-season Bayesian updating provided more accurate run size estimates during the time when harvest decisions needed to be made, but that the incorporation of run timing forecasts had little utility in terms of providing more accurate run size estimates. The latter finding is conditional on the performance of the run timing forecast model we used; a more accurate timing forecast model might yield a different conclusion. The Bayesian approach we developed provided a probabilistic expression of run size beliefs, which could be useful in a transparent risk-assessment framework for setting and altering harvest targets during the season.


2018 ◽  
Vol 75 (9) ◽  
pp. 1427-1435 ◽  
Author(s):  
Eef Cauwelier ◽  
John Gilbey ◽  
James Sampayo ◽  
Lee Stradmeyer ◽  
Stuart J. Middlemas

Examination of the genetic basis of the timing of the return migration of Atlantic salmon (Salmo salar) to fresh water from the sea, a trait of economic and conservation interest, was carried out using a genome-wide association study. We examined genotype data of 52 731 single nucleotide polymorphic (SNP) markers from 73 early and 49 late running two-sea-winter salmon from five rivers in eastern Scotland. A single region of the Atlantic salmon chromosome Ssa09 was identified, containing nine SNP markers significantly associated with run timing, a region previously linked to variation in sea age at maturity. Validation of the markers in a group of 233 one- and two-sea-winter fish, including adults from a novel river, again showed significant associations between the trait and the Ssa09 region, explaining ∼24% of the trait variance. The SNP loci identified provide the ability to examine trait variation in populations of Atlantic salmon and so help facilitate conservation management of the differing run timing phenotypes.


2015 ◽  
Vol 72 (10) ◽  
pp. 1518-1526 ◽  
Author(s):  
Milo D. Adkison ◽  
Curry J. Cunningham

We examine the effect of uncertainty in salmon run abundance and run timing on the ability of managers to achieve escapement goals using in-season regulation of fishery openings using a detailed model of the arrival of salmon and operation of the fishery, the information available to managers, and managers’ behavior. We supplement this management strategy evaluation by examining historical management performance of sockeye salmon (Oncorhynchus nerka) fisheries from Bristol Bay, Alaska. We find that uncertainty about run timing exacerbates the effects of uncertainty about salmon abundance. Early-arriving small runs and late-arriving large runs are especially problematic, as they produce in-season data that mimic that of a typically sized run with average run timing. Managers faced with an early-arriving small run will tend to overharvest the fish, particularly the earliest-arriving component. Managers faced with a late-arriving large run will tend to underharvest the fish, and harvest the latest-arriving components at a higher rate. This differential harvest of early or late components of the run is important because it might reduce the genetic diversity of the stock, thus reducing its future productivity.


Sign in / Sign up

Export Citation Format

Share Document