scholarly journals The Electron Structure of the Solar Wind

Author(s):  
Joseph E. Borovsky ◽  
Jasper S. Halekas ◽  
Phyllis L. Whittlesey

Time-series measurements of the number density ncore and temperature Tcore of the core-electron population of the solar wind are examined at 1 AU and at 0.13 AU using measurements from the WIND and Parker Solar Probe spacecraft, respectively. A statistical analysis of the ncore and Tcore measurements at 1 AU finds that the core-electron spatial structure of the solar wind is related to the magnetic-flux-tube structure of the solar wind; this electron structure is characterized by jumps in the values of ncore and Tcore when passing from one magnetic flux tube into the next. The same types of flux-tube jumps are seen for Tcore at 0.13 AU. Some models of the interplanetary electrical potential of the heliosphere predict that Tcore is a direct measure of the local electrical potential in the heliosphere. If so, then jumps seen in Tcore represent jumps in the electrical potential from flux tube to flux tube. This may imply that the interplanetary electrical potential (and its effect on the radial evolution away from the Sun of solar-wind ions and electrons) independently operates in each flux tube of the heliosphere.

1979 ◽  
Vol 3 (6) ◽  
pp. 369-371 ◽  
Author(s):  
D. B. Melrose ◽  
S. M. White

The basic model for the precipitation of trapped energetic particles from a magnetic flux tube is Kennel and Petschek’s (1966) model. Their model is symmetric, implying equal precipitation rates at the two feet of the flux tube. We have developed a model for precipitation in an asymmetric flux tube (Melrose and White 1979). Here we explore some of the consequences for the precipitation model of Melrose and Brown (1976) for solar hard X-ray bursts. In Melrose and Brown’s model roughly half the X-rays arise from precipitating electrons. With present instruments it is not possible to resolve the two feet of the flux tube. However, if the feet can be resolved, either directly by future X-ray telescopes, or indirectly through secondary optical, UV or radio observations, then, as we shall show, the additional information obtained could be used to derive information on processes in the magnetic trap.


2004 ◽  
Vol 22 (1) ◽  
pp. 213-236 ◽  
Author(s):  
O. L. Vaisberg ◽  
L. A. Avanov ◽  
T. E. Moore ◽  
V. N. Smirnov

Abstract. We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c) distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a) type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b) and (c) ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions)


Author(s):  
D E Fawzy ◽  
A T Saygac ◽  
K Stȩpień

Abstract The aim of the current study is the computation of the magnetic flux tube wave energies and fluxes generated in the convection zone of Procyon A. This is a subgiant of spectral type F5 IV-V showing chromospheric and coronal activities. The mechanisms responsible for the generation of different wave modes include the interaction of the thin and vertically oriented magnetic flux tube embedded in magnetic-free regions with turbulence in the convection zone of Procyon A. We are considering longitudinal, transverse and acoustic wave modes. Turbulence in the convection zone is modeled by the extended Kolmogorov turbulent energy spectrum and the modified Gaussian frequency factor. Different magnetic flux tube models with different degrees of magnetic activities were considered. The current approach takes the nonlinear effects into consideration. The results show that there is enough wave energy in the three different forms to heat the outer layers of the star. The obtained acoustic wave energies are larger than those of the longitudinal tube wave energies compared to the solar case. This can be explained by the relatively low magnetic field strength. On the other side, our computations show the importance of the transverse wave energies compared to the energies carried by the longitudinal waves. The former waves carry energy several (between 2 and 14) times higher than the latter. The obtained wave energies are essential for constructing time-dependent model chromospheres and for the predictions of atmospheric oscillations to be compared e.g. with the data collected by the CoRoT and Kepler missions.


Sign in / Sign up

Export Citation Format

Share Document