upper limb prosthetics
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Simon Shaw ◽  
Louise Tofts ◽  
Mobin Syed ◽  
Nadia Vigna ◽  
Cameron Ward ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Hannah Jones ◽  
Sigrid Dupan ◽  
Matthew Dyson ◽  
Agamemnon Krasoulis ◽  
Laurence P. J. Kenney ◽  
...  

People who either use an upper limb prosthesis and/or have used services provided by a prosthetic rehabilitation centre, experience limitations of currently available prosthetic devices. Collaboration between academia and a broad range of stakeholders, can lead to the development of solutions that address peoples' needs. By doing so, the rate of prosthetic device abandonment can decrease. Co-creation is an approach that can enable collaboration of this nature to occur throughout the research process. We present findings of a co-creation project that gained user perspectives from a user survey, and a subsequent workshop involving: people who use an upper limb prosthesis and/or have experienced care services (users), academics, industry experts, charity executives, and clinicians. The survey invited users to prioritise six themes, which academia, clinicians, and industry should focus on over the next decade. The prioritisation of the themes concluded in the following order, with the first as the most important: function, psychology, aesthetics, clinical service, collaboration, and media. Within five multi-stakeholder groups, the workshop participants discussed challenges and collaborative opportunities for each theme. Workshop groups prioritised the themes based on their discussions, to highlight opportunities for further development. Two groups chose function, one group chose clinical service, one group chose collaboration, and another group chose media. The identified opportunities are presented within the context of the prioritised themes, including the importance of transparent information flow between all stakeholders; user involvement throughout research studies; and routes to informing healthcare policy through collaboration. As the field of upper limb prosthetics moves toward in-home research, we present co-creation as an approach that can facilitate user involvement throughout the duration of such studies.


Prosthesis ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 110-118
Author(s):  
Hannah Jones ◽  
Sigrid Dupan ◽  
Maxford Coutinho ◽  
Sarah Day ◽  
Deirdre Desmond ◽  
...  

People who either use an upper limb prosthesis and/or have used services provided by a prosthetic rehabilitation centre, hereafter called users, are yet to benefit from the fast-paced growth in academic knowledge within the field of upper limb prosthetics. Crucially over the past decade, research has acknowledged the limitations of conducting laboratory-based studies for clinical translation. This has led to an increase, albeit rather small, in trials that gather real-world user data. Multi-stakeholder collaboration is critical within such trials, especially between researchers, users, and clinicians, as well as policy makers, charity representatives, and industry specialists. This paper presents a co-creation model that enables researchers to collaborate with multiple stakeholders, including users, throughout the duration of a study. This approach can lead to a transition in defining the roles of stakeholders, such as users, from participants to co-researchers. This presents a scenario whereby the boundaries between research and participation become blurred and ethical considerations may become complex. However, the time and resources that are required to conduct co-creation within academia can lead to greater impact and benefit the people that the research aims to serve.


Prosthesis ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 340-351
Author(s):  
Corry K. van der Sluis ◽  
Raoul M. Bongers

Many research initiatives have been employed in upper limb prosthetics (ULP) in the last few decades. The body of knowledge is growing and inspired by new and interesting technology that has been brought to the market to facilitate functioning of people with upper limb defects. However, a lot of research initiatives do not reach the target population. Several reasons can be identified as to why research does not move beyond the lab, such as lack of research quality, disappointing results of new initiatives, lack of funding to further develop promising initiatives, and poor implementation or dissemination of results. In this paper, we will appraise the current status of the research in ULP. Furthermore, we will try to provide food for thought to scale up research in ULP, focusing on (1) translation of research findings, (2) the quality of innovations in the light of evidence-based medicine and evidence-based practice, (3) patient involvement, and (4) spreading of research findings by focusing on implementation and dissemination of results and collaboration in a national and international perspective. With this paper, we aim to open the discussion on scaling up research in the community of professionals working in the field of ULP.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 398 ◽  
Author(s):  
Attila Pentek ◽  
Miklos Nyitrai ◽  
Adam Schiffer ◽  
Hajnalka Abraham ◽  
Matyas Bene ◽  
...  

Additive manufacturing technologies are dynamically developing, strongly affecting almost all fields of industry and medicine. The appearance of electrically conductive polymers has had a great impact on the prototyping process of different electrical components in the case of upper limb prosthetic development. The widely used FFF 3D printing technology mainly uses PLA (polylactic acid) and ABS (acrylonitrile butadiene styrene) based composites, and despite their presence in the field, a detailed, critical characterization and comparison of them has not been performed yet. Our aim was to characterize two PLA and ABS based carbon composites in terms of electrical and mechanical behavior, and extend the observations with a structural and signal transfer analysis. The measurements were carried out by changing the different printing parameters, including layer resolution, printing orientation and infill density. To determine the mechanical properties, static and dynamic tests were conducted. The electrical characterization was done by measuring the resistance and signal transfer characteristics. Scanning electron microscopy was used for the structural analysis. The results proved that the printing parameters had a significant effect on the mechanical and electrical characteristics of both materials. As a major novelty, it was concluded that the ABS carbon composite has more favorable behavior in the case of additive manufacturing of electrical components of upper limb prosthetics, and they can be used as moving, rotating parts as well.


Sign in / Sign up

Export Citation Format

Share Document