scholarly journals The Effect of Printing Parameters on Electrical Conductivity and Mechanical Properties of PLA and ABS Based Carbon Composites in Additive Manufacturing of Upper Limb Prosthetics

Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 398 ◽  
Author(s):  
Attila Pentek ◽  
Miklos Nyitrai ◽  
Adam Schiffer ◽  
Hajnalka Abraham ◽  
Matyas Bene ◽  
...  

Additive manufacturing technologies are dynamically developing, strongly affecting almost all fields of industry and medicine. The appearance of electrically conductive polymers has had a great impact on the prototyping process of different electrical components in the case of upper limb prosthetic development. The widely used FFF 3D printing technology mainly uses PLA (polylactic acid) and ABS (acrylonitrile butadiene styrene) based composites, and despite their presence in the field, a detailed, critical characterization and comparison of them has not been performed yet. Our aim was to characterize two PLA and ABS based carbon composites in terms of electrical and mechanical behavior, and extend the observations with a structural and signal transfer analysis. The measurements were carried out by changing the different printing parameters, including layer resolution, printing orientation and infill density. To determine the mechanical properties, static and dynamic tests were conducted. The electrical characterization was done by measuring the resistance and signal transfer characteristics. Scanning electron microscopy was used for the structural analysis. The results proved that the printing parameters had a significant effect on the mechanical and electrical characteristics of both materials. As a major novelty, it was concluded that the ABS carbon composite has more favorable behavior in the case of additive manufacturing of electrical components of upper limb prosthetics, and they can be used as moving, rotating parts as well.

2018 ◽  
Vol 6 (3) ◽  
pp. 035403 ◽  
Author(s):  
Peter Maroti ◽  
Peter Varga ◽  
Hajnalka Abraham ◽  
Gyorgy Falk ◽  
Tamas Zsebe ◽  
...  

2021 ◽  
Vol 15 (4) ◽  
pp. 491-497
Author(s):  
Tomislav Breški ◽  
Lukas Hentschel ◽  
Damir Godec ◽  
Ivica Đuretek

Fused filament fabrication (FFF) is currently one of the most popular additive manufacturing processes due to its simplicity and low running and material costs. Support structures, which are necessary for overhanging surfaces during production, in most cases need to be manually removed and as such, they become waste material. In this paper, experimental approach is utilised in order to assess suitability of recycling support structures into recycled filament for FFF process. Mechanical properties of standardized specimens made from recycled polylactic acid (PLA) filament as well as influence of layer height and infill density on those properties were investigated. Optimal printing parameters for recycled PLA filaments are determined with Design of Experiment methods (DOE).


Author(s):  
Michal Jilich ◽  
Mattia Frascio ◽  
Massimiliano Avalle ◽  
Matteo Zoppi

The paper presents how a robotic gripper specific for grasping and handling of textiles and soft flexible layers can be miniaturized and improved by polymeric additive manufacturing-oriented re-design. Advantages of polymeric additive manufacturing are to allow a re-design of components with integrated functions, to be cost-effective equipment for small batches production and the availability of suitable materials for many applications. The drawback is that for design validation extended testing is still necessary because of lacks in standardization and that the mechanical properties are building parameters dependent. The outcomes are a lower complexity of the design overall and lower number of components. These are pursued taking advantage of the anisotropy of the additive manufacturing processed polymer and assigning appropriate shapes and linkages in the mechanisms. Set of common materials (polylactide, polyethylene terephthalate, acrylonitrile butadiene styrene) and technical (acrylonitrile styrene acrylate, polycarbonate/polybutylene terephthalate blend) are tested to obtain data for the modelling.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2960
Author(s):  
Zoltan Ujfalusi ◽  
Attila Pentek ◽  
Roland Told ◽  
Adam Schiffer ◽  
Miklos Nyitrai ◽  
...  

Currently, 3D printing is an affordable technology for industry, healthcare, and individuals. Understanding the mechanical properties and thermoplastic behaviour of the composites is critical for the users. Our results give guidance for certain target groups including professionals in the field of additive manufacturing for biomedical components with in-depth characterisation of the examined commercially available ABS and PLA carbon-based composites. The study aimed to characterize these materials in terms of thermal behaviour and structure. The result of the heating-cooling loops is the thermal hysteresis effect of Ohmic resistance with its accommodation property in the temperature range of 20–84 °C for ESD-ABS and 20–72 °C for ESD-PLA. DSC-TGA measurements showed that the carbon content of the examined ESD samples is ~10–20% (m/m) and there is no significant difference in the thermodynamic behaviour of the basic ABS/PLA samples and their ESD compounds within the temperature range typically used for 3D printing. The results support the detailed design process of 3D-printed electrical components and prove that ABS and PLA carbon composites are suitable for prototyping and the production of biomedical sensors.


2020 ◽  
Vol 10 (12) ◽  
pp. 4148
Author(s):  
Rodrigo Cézar da Silveira Romero ◽  
André Argueso Machado ◽  
Kliftom Amorim Costa ◽  
Paulo Henrique Rodriguês Guilherme Reis ◽  
Pedro Paiva Brito ◽  
...  

This work aims to develop a low-cost human hand prosthesis manufactured through additive manufacturing. The methodology used for the development of the prosthesis used affordable and low-cost materials in the market. Tensile testing was performed to estimate the mechanical properties in order to verify the resistance of the printing material used. Afterwards, the mechanical feasibility study executed on the device was performed using finite element method. In conclusion, we can observe fundamental factors that influence the 3D printing process, especially in relation to its printing parameters and mechanical properties. Maximum stress, yield stress, modulus of elasticity, elongation, and hardness are the prominent properties that should be considered when choosing the polymeric material. The numerical simulation showed that the structure of the prosthesis did not present plastic deformations to the applied loads, proving its mechanical viability.


1995 ◽  
Vol 383 ◽  
Author(s):  
Jyh-Ming Ting

ABSTRACTIn contrast to the form in which other carbon fibers are produced, vapor grown carbon fiber (VGCF) is produced from gas phase precursors in the form of individual fibers of discrete lengths. VGCF can be harvested as a mat of semi-aligned, semicontinuous fibers, with occasional fiber branching and curling. The use of VGCF mats as reinforcement result in composites which exhibit unique microstructure and physical properties that are not observed in other types of carbon composites. This paper describes the processing of VGCF mats reinforced carbon composites, and its unique microstructure and properties. Utilization of fiber tensile properties, as well as thermal conductivity, in the composites is discussed. Comparison of experimental results from various VGCF composites to theory indicates that mechanical properties are more strongly affected by characteristics of VGCF mat than are thermal conductivity. The implications of this relationship favors applications for thermal management where structural demands are less stringent.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3961 ◽  
Author(s):  
Hong Xiao ◽  
Wei Han ◽  
Yueke Ming ◽  
Zhongqiu Ding ◽  
Yugang Duan

Three-dimensional printing of continuous carbon fiber/epoxy composites (CCF/EPCs) is an emerging additive manufacturing technology for fiber-reinforced polymer composites and has wide application prospects. However, the 3D printing parameters and their relationship with the mechanical properties of the final printed samples have not been fully investigated in a computational and quantifiable way. This paper presents a sensitivity analysis (SA)-based parameter optimization framework for the 3D printing of CCF/EPCs. A surrogate model for a process parameter–mechanical property relationship was established by support vector regression (SVR) analysis of the experimental data on flexural strength and flexural modulus under different process parameters. An SA was then performed on the SVR surrogate model to calculate the importance of each individual 3D printing parameter on the mechanical properties of the printed samples. Based on the SA results, the optimal 3D printing parameters and the corresponding flexural strength and flexural modulus of the printed samples were predicted and verified by experiments. The results showed that the proposed framework can serve as a high-accuracy tool to optimize the 3D printing parameters for the additive manufacturing of CCF/EPCs.


2020 ◽  
Vol 26 (10) ◽  
pp. 1733-1738
Author(s):  
André Luiz Alves Guimarães ◽  
Vicente Gerlin Neto ◽  
Cesar Renato Foschini ◽  
Maximiliano dos Anjos Azambuja ◽  
Luiz Antonio Vasques Hellmeister

Purpose The purpose of this paper is to investigate and discuss the influence of printing parameters on the mechanical properties of acrylonitrile butadiene styrene (ABS) print by fused deposition modelling (FDM). The mechanical properties of ABS are highly influenced by printing parameters, and they determine the final product quality of printed pieces. Design/methodology/approach For the paper’s purpose, five main parameters (extrusion temperature, infill pattern, air gap, printing speed and layer thickness) were selected and varied during ABS printing on an open-source and self-replicable FDM printer. Three different colors of commercially available ABS were also used to investigate color and printing parameter’s influence on the tensile strength. Findings The research results suggest that two parameters (infill pattern and layer thickness) were most influential on the mechanical properties of print ABS, being able to enhance its tensile strength. Another key influential factor was material color selected prior to printing, which influenced the tensile strength of the print specimen. Originality/value This study provides information on print parameters’ influence on the tensile strength of ABS print on replicable open-source three-dimensional (3D) printers. It also suggests the influence of materials’ color on print pieces’ tensile strength, indicating a new parameter for materials selection for 3D printing.


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Barbara Szaraniec ◽  
Patrycja Rosół ◽  
Jan Chłopek

AbstractThis paper reports on mechanical and biological properties of carboncarbon1 composites and polysulfone modified by hydroxyapatite (HAP), both natural (nano-particles) and synthetic (micro-particles) minerals. Results show that carbon-HAP composites have mechanical properties similar to carbon-carbon composites, while addition of HAP to polysulfone causes advantageous growth of Young’s modulus and limitation of creep, and disadvantageous decrease of tensile strength. Tests performed in simulated body fluid for carbon-HAP and polysulfone- HAP composites prove that the process of hydroxyapatite build-up becomes most intensive in the case of composites with nano-particles originating from natural hydroxyapatite.


Sign in / Sign up

Export Citation Format

Share Document