scholarly journals Supplementary material to "Understanding model spread in sea ice volume by attribution of model differences in seasonal ice growth and melt"

Author(s):  
Alex West ◽  
Ed Blockley ◽  
Mat Collins
2021 ◽  
Author(s):  
Alex West ◽  
Ed Blockley ◽  
Mat Collins

Abstract. Arctic sea ice is declining rapidly, but predictions of its future loss are made difficult by the large spread both in present-day and in future sea ice area and volume; hence, there is a need to better understand the drivers of model spread in sea ice state. Here we present a framework for understanding differences between modelled sea ice simulations based on attributing seasonal ice growth and melt differences. In the method presented, the net downward surface flux is treated as the principal driver of seasonal sea ice growth and melt. A system of simple models is used to estimate the pointwise effect of model differences in key Arctic climate variables on this surface flux, and hence on seasonal sea ice growth and melt. We compare three models with very different historical sea ice simulations: HadGEM2-ES, HadGEM3-GC3.1 and UKESM1.0. The largest driver of differences in ice growth / melt between these models is shown to be the ice area in summer (representing the surface albedo feedback) and the ice thickness distribution in winter (the thickness-growth feedback). Differences in snow and melt-pond cover during the early summer exert a smaller effect on the seasonal growth and melt, hence representing the drivers of model differences in both this and in the sea ice volume. In particular, the direct impacts on sea ice growth / melt of differing model parameterisations of snow area and of melt-ponds are shown to be small but non-negligible.


2018 ◽  
Vol 12 (4) ◽  
pp. 1233-1247 ◽  
Author(s):  
Xianmin Hu ◽  
Jingfan Sun ◽  
Ting On Chan ◽  
Paul G. Myers

Abstract. Sea ice thickness evolution within the Canadian Arctic Archipelago (CAA) is of great interest to science, as well as local communities and their economy. In this study, based on the NEMO numerical framework including the LIM2 sea ice module, simulations at both 1∕4 and 1/12∘ horizontal resolution were conducted from 2002 to 2016. The model captures well the general spatial distribution of ice thickness in the CAA region, with very thick sea ice (∼ 4 m and thicker) in the northern CAA, thick sea ice (2.5 to 3 m) in the west-central Parry Channel and M'Clintock Channel, and thin (<2 m) ice (in winter months) on the east side of CAA (e.g., eastern Parry Channel, Baffin Island coast) and in the channels in southern areas. Even though the configurations still have resolution limitations in resolving the exact observation sites, simulated ice thickness compares reasonably (seasonal cycle and amplitudes) with weekly Environment and Climate Change Canada (ECCC) New Ice Thickness Program data at first-year landfast ice sites except at the northern sites with high concentration of old ice. At 1∕4 to 1/12∘ scale, model resolution does not play a significant role in the sea ice simulation except to improve local dynamics because of better coastline representation. Sea ice growth is decomposed into thermodynamic and dynamic (including all non-thermodynamic processes in the model) contributions to study the ice thickness evolution. Relatively smaller thermodynamic contribution to ice growth between December and the following April is found in the thick and very thick ice regions, with larger contributions in the thin ice-covered region. No significant trend in winter maximum ice volume is found in the northern CAA and Baffin Bay while a decline (r2 ≈ 0.6, p < 0.01) is simulated in Parry Channel region. The two main contributors (thermodynamic growth and lateral transport) have high interannual variabilities which largely balance each other, so that maximum ice volume can vary interannually by ±12 % in the northern CAA, ±15 % in Parry Channel, and ±9 % in Baffin Bay. Further quantitative evaluation is required.


2001 ◽  
Vol 33 ◽  
pp. 399-406 ◽  
Author(s):  
N. L. Bindoff ◽  
G. D. Williams ◽  
I. Allison

AbstractIn July-September 1999, an extensive oceanographic survey (87 conductivity-, temperature-and depth-measuring stations) was conducted in the Mertz Glacier polynya over the Adélie Depression off the Antarctic coast between 145° and 150° E. We identify and describe four key water masses in this polynya: highly modified circumpolar deep water (HMCDW), winter water (WW), ice-shelf water (ISW) and high-salinity shelf water (HSSW). Combining surface velocity data (from an acoustic Doppler current-profiler) with three hydrographic sections, we found the HMCDW to be flowing westward along the shelf break (0.7 Sv), the WW and HSSW flowing eastwards underneath Mertz Glacier (2.0 Sv) and that there was a westward return flow of ISW against the continent (1.2 Sv). Using a simple box model for the exchanges of heat and fresh water between the principal water masses, we find that the polynya was primarily a latent-heat polynya with 95% of the total heat flux caused by sea-ice formation. This heat flux results from a fresh-water-equivalent sea-ice growth rate of 4.9−7.7 cm d−1 and a mass exchange between HMCDW and WW of 1.45 Sv The inferred ocean heat flux is 8−14 W m−2 and compares well with other indirect estimates.


2021 ◽  
Author(s):  
Harry Heorton ◽  
Michel Tsamados ◽  
Paul Holland ◽  
Jack Landy

&lt;p&gt;&lt;span&gt;We combine satellite-derived observations of sea ice concentration, drift, and thickness to provide the first observational decomposition of the dynamic (advection/divergence) and thermodynamic (melt/growth) drivers of wintertime Arctic sea ice volume change. Ten winter growth seasons are analyzed over the CryoSat-2 period between October 2010 and April 2020. Sensitivity to several observational products is performed to provide an estimated uncertainty of the budget calculations. The total thermodynamic ice volume growth and dynamic ice losses are calculated with marked seasonal, inter-annual and regional variations&lt;/span&gt;&lt;span&gt;. Ice growth is fastest during Autumn, in the Marginal Seas and over first year ice&lt;/span&gt;&lt;span&gt;.&amp;#160;Our budget decomposition methodology can help diagnose the processes confounding climate model predictions of sea ice. We make our product and code available to the community in monthly pan-Arctic netcdft files for the entire October 2010 to April 2020 period.&lt;/span&gt;&lt;/p&gt;


2018 ◽  
Vol 45 (21) ◽  
pp. 11,751-11,759 ◽  
Author(s):  
Felix Bunzel ◽  
Dirk Notz ◽  
Leif Toudal Pedersen
Keyword(s):  
Sea Ice ◽  

2013 ◽  
Vol 54 (62) ◽  
pp. 97-104 ◽  
Author(s):  
Chengyu Liu ◽  
Wei Gu ◽  
Jinlong Chao ◽  
Lantao Li ◽  
Shuai Yuan ◽  
...  

AbstractTo investigate the spatio-temporal characteristics of sea-ice resource, we used sea-ice volume to measure the amount of sea-ice resource in the Bohai Sea, China. The sea-ice area was extracted from Advanced Very High Resolution Radiometer (AVHRR) remote-sensing images using the zonal threshold method. The sea-ice thickness was estimated using a sea-ice model based on shortwave radiation theory and field measurements. The spatio-temporal characteristics of sea-ice volume were then analysed using GIS technology. The results indicate that the Bohai Sea experienced two sea-ice volume peaks in winter 2009/10. The largest sea-ice volume was in Liaodong Bay (∼80.26% of the entire sea-ice volume of the Bohai Sea). Bohai Bay had the second largest ice volume, and Laizhou Bay the smallest. The relationship between sea-ice volume and distance from shore is essentially exponential. The proportion of total sea-ice volume that is 0–10 km from shore is ∼42.43%, whereas the proportion that is 100–110 km from shore is only 0.002%.


2019 ◽  
Author(s):  
Eleonora Fossile ◽  
Maria Pia Nardelli ◽  
Arbia Jouini ◽  
Bruno Lansard ◽  
Antonio Pusceddu ◽  
...  

2015 ◽  
Vol 6 (2) ◽  
pp. 2137-2179
Author(s):  
X. Shi ◽  
G. Lohmann

Abstract. A newly developed global climate model FESOM-ECHAM6 with an unstructured mesh and high resolution is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. A sensitivity experiment is performed which reduces the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting decrease in the Arctic winter sea-ice concentration strongly reduces the surface albedo, enhances the ocean heat release to the atmosphere, and increases the sea-ice production. Furthermore, our simulations show a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the sea ice transport affects the freshwater budget in regions of deep water formation. A warming over Europe, Asia and North America, associated with a negative anomaly of Sea Level Pressure (SLP) over the Arctic (positive phase of the Arctic Oscillation (AO)), is also simulated by the model. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), especially for the Pacific sector. Additionally, a series of sensitivity tests are performed using an idealized 1-D thermodynamic model to further investigate the influence of the open-water ice growth, which reveals similar results in terms of the change of sea ice and ocean temperature. In reality, the distribution of new ice on open water relies on many uncertain parameters, for example, surface albedo, wind speed and ocean currents. Knowledge of the detailed processes is currently too crude for those processes to be implemented realistically into models. Our sensitivity experiments indicate a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system.


Ocean Science ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. 185-202 ◽  
Author(s):  
G. D. Williams ◽  
M. Hindell ◽  
M.-N. Houssais ◽  
T. Tamura ◽  
I. C. Field

Abstract. Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140–148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine rejection in the local coastal polynyas. In 2005, two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for several weeks from the end of February. One of the seals migrated west to the Dibble Ice Tongue, apparently utilising the Antarctic Slope Front current near the continental shelf break. In 2010, immediately after that year's calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and sampled the Commonwealth Bay polynya from March through April. Here we present observations of the regional oceanography during the summer-fall transition, in particular (i) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (ii) the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (iii) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth. Heat and freshwater budgets to 200–300 m are used to estimate the ocean heat content (400→50 MJ m−2), flux (50–200 W m−2 loss) and sea ice growth rates (maximum of 7.5–12.5 cm day−1). Mean seal-derived sea ice growth rates were within the range of satellite-derived estimates from 1992–2007 using ERA-Interim data. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer/fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep seasonal mixed layer and chlorophyll maximum that is a reported feature of this location.


Sign in / Sign up

Export Citation Format

Share Document