synovial fibroblast
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 39)

H-INDEX

33
(FIVE YEARS 5)

RMD Open ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. e001949
Author(s):  
Raphael Micheroli ◽  
Muriel Elhai ◽  
Sam Edalat ◽  
Mojca Frank-Bertoncelj ◽  
Kristina Bürki ◽  
...  

ObjectivesTo integrate published single-cell RNA sequencing (scRNA-seq) data and assess the contribution of synovial fibroblast (SF) subsets to synovial pathotypes and respective clinical characteristics in treatment-naïve early arthritis.MethodsIn this in silico study, we integrated scRNA-seq data from published studies with additional unpublished in-house data. Standard Seurat, Harmony and Liger workflow was performed for integration and differential gene expression analysis. We estimated single cell type proportions in bulk RNA-seq data (deconvolution) from synovial tissue from 87 treatment-naïve early arthritis patients in the Pathobiology of Early Arthritis Cohort using MuSiC. SF proportions across synovial pathotypes (fibroid, lymphoid and myeloid) and relationship of disease activity measurements across different synovial pathotypes were assessed.ResultsWe identified four SF clusters with respective marker genes: PRG4+ SF (CD55, MMP3, PRG4, THY1neg); CXCL12+ SF (CXCL12, CCL2, ADAMTS1, THY1low); POSTN+ SF (POSTN, collagen genes, THY1); CXCL14+ SF (CXCL14, C3, CD34, ASPN, THY1) that correspond to lining (PRG4+ SF) and sublining (CXCL12+ SF, POSTN+ + and CXCL14+ SF) SF subsets. CXCL12+ SF and POSTN+ + were most prominent in the fibroid while PRG4+ SF appeared highest in the myeloid pathotype. Corresponding, lining assessed by histology (assessed by Krenn-Score) was thicker in the myeloid, but also in the lymphoid pathotype + the fibroid pathotype. PRG4+ SF correlated positively with disease severity parameters in the fibroid, POSTN+ SF in the lymphoid pathotype whereas CXCL14+ SF showed negative association with disease severity in all pathotypes.ConclusionThis study shows a so far unexplored association between distinct synovial pathologies and SF subtypes defined by scRNA-seq. The knowledge of the diverse interplay of SF with immune cells will advance opportunities for tailored targeted treatments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anil K. Singh ◽  
Mahamudul Haque ◽  
Bhanupriya Madarampalli ◽  
Yuanyuan Shi ◽  
Benjamin J. Wildman ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2273
Author(s):  
Peraphan Pothacharoen ◽  
Rujirek Chaiwongsa ◽  
Theerawut Chanmee ◽  
Orapin Insuan ◽  
Thanchanok Wongwichai ◽  
...  

Bromelain, a mixture of proteases in pineapple rhizome, has beneficial biological properties. Following absorption, the compound remains biologically active in mammalian blood and tissues. Bromelain has multiple clinical and therapeutic applications because of its anti-arthritic activities. Anti-inflammation is one of the putative therapeutic effects of bromelain on osteoarthritis (OA) and rheumatoid arthritis (RA), but the molecular mechanisms in cartilage and synovial fibroblast has not been reported. Thus, in this study, interleukin (IL)-1β/oncostatin M-induced porcine cartilage and TNF-α–induced synovial fibroblast were used as the inflamed OA and RA models, respectively. The results demonstrated the chondroprotective effects of bromelain on cartilage degradation and the downregulation of inflammatory cytokine (tumor necrosis factor (TNF)-α, IL-1β, IL-6, IL-8) expression in TNF-α–induced synovial fibroblasts by suppressing NF-κB and MAPK signaling. The evidence from this study supported and explained the anti-inflammatory and analgesic effects of bromelain on arthritis in animal models and clinical studies.


2021 ◽  
Vol 154 ◽  
pp. 104829
Author(s):  
Rui Liu ◽  
Bin Xu ◽  
Jingfeng Zhang ◽  
Huawei Sun ◽  
Chuanmin Liu ◽  
...  

2021 ◽  
Author(s):  
◽  
Brittany Schwam

Rheumatoid arthritis is a chronic inflammatory disease primarily affecting the synovium, articular cartilage, and bone within a joint, but it is a unique form of arthritis wherein effects are systemic. The cause of this autoimmune disease remains unknown, but there are many environmental and genetic factors that play into susceptibility. Research is still far from drug-free remission despite great advancements over the past few decades. The majority of therapies developed rely on immunosuppressant or immunomodulator molecules and come with risk of infection, high costs, and toxic, uncontrolled side effects. Those diagnosed maintain a significant unmet need for targeted therapies. There is increasing evidence towards non-immune cell types in the joint as the culprit for the changes in anatomy of the joint at disease onset. A thin lining called the synovium covers the joint cartilage and acts as a barrier which secretes synovial fluid that lubricates the joint. Synovial fibroblasts, also called fibroblast-like synoviocytes, are responsible for this secretion of lubricating components hyaluronic acid and lubricin that allow for ease of movement. Together with macrophages, they make up the synovial lining and sub-lining in roughly equal proportion. Proinflammatory cytokine production in the inflamed joint leads to synovial fibroblast proliferation and transforms these cells into a “tumor-like” phenotype with the capacity to degrade cartilage and bone. Synovial fibroblasts perpetuate the destruction of articular cartilage by producing matrix-degrading enzymes, cytokines, and increasing production of adhesion molecules to attach and build on to cartilage. The synovium thickens and the cartilage and bone in the joint is broken down, and synovial fibroblasts recruit more immune cells to the joint to further exacerbate joint destruction. This positive feedback loop makes synovial fibroblasts a desirable target for anti-rheumatic drugs An abundance of research implicating TRP channels in rheumatoid arthritis synovial fibroblasts pathogenic phenotype has accumulated over the past decade. Studies of the rheumatoid synovium demonstrate the expression of several of these channels including TRPV1, TRPV2, TRPV4, TRPA1, TRPM7, TRPM8, and more. The channels’ direct implication in synovial fibroblast aggressive phenotype is becoming better understood and shows promise for TRP channels as therapeutic targets. My master’s thesis will focus on TRP channel involvement in mechanisms by which synovial fibroblasts evade apoptosis, proliferate, degrade the joint, and migrate to unaffected joints in order to understand these biological sensors as potential rheumatoid arthritis therapeutic candidates.


Sign in / Sign up

Export Citation Format

Share Document