protein chaperones
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 9)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 118 (25) ◽  
pp. e2101164118
Author(s):  
Haina Huang ◽  
Katrin Karbstein

While RNAs are known to misfold, the underlying molecular causes have been mainly studied in fragments of biologically relevant larger RNAs. As these small RNAs are dominated by secondary structures, misfolding of these secondary structures remains the most-explored cause for global RNA misfolding. Conversely, how RNA chaperones function in a biological context to promote native folding beyond duplex annealing remains unknown. Here, in a combination of dimethylsulfate mutational profiling with sequencing (DMS-MaPseq), structural analyses, biochemical experiments, and yeast genetics, we show that three-helix junctions are prone to misfolding during assembly of the small ribosomal subunit in vivo. We identify ubiquitous roles for ribosome assembly factors in chaperoning their folding by preventing the formation of premature tertiary interactions, which otherwise kinetically trap misfolded junctions, thereby blocking further progress in the assembly cascade. While these protein chaperones act indirectly by binding the interaction partners of junctions, our analyses also suggest direct roles for small nucleolar RNAs (snoRNAs) in binding and chaperoning helical junctions during transcription. While these assembly factors do not utilize energy to ameliorate misfolding, our data demonstrate how their dissociation renders reversible folding steps irreversible, thereby driving native folding and assembly and setting up a timer that dictates the propensity of misfolded intermediates to escape quality control. Finally, the data demonstrate that RNA chaperones act locally on individual tertiary interactions, in contrast to protein chaperones, which globally unfold misfolded proteins.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Allison Fay ◽  
John Philip ◽  
Priya Saha ◽  
Ronald C. Hendrickson ◽  
Michael S. Glickman ◽  
...  

ABSTRACT Chaperones aid in protein folding and maintenance of protein integrity. In doing so, they have the unique ability to directly stabilize resistance-conferring amino acid substitutions in drug targets and to counter the stress imparted by these substitutions, thus supporting heritable antimicrobial resistance (AMR). We asked whether chaperones support AMR in Mycobacterium smegmatis, a saprophytic model of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). We show that DnaK associates with many drug targets and that DnaK associates more with AMR-conferring mutant RNA polymerase (RNAP) than with wild-type RNAP. In addition, frequency-of-resistance (FOR) and fitness studies reveal that the DnaK system of chaperones supports AMR in antimicrobial targets in mycobacteria, including RNAP and the ribosome. These findings highlight chaperones as potential targets for drugs to overcome AMR in mycobacteria, including M. tuberculosis, as well as in other pathogens. IMPORTANCE AMR is a global problem, especially for TB. Here, we show that mycobacterial chaperones support AMR in M. smegmatis, a nonpathogenic model of M. tuberculosis, the causative agent of TB. In particular, the mycobacterial DnaK system of chaperones supports AMR in the antimicrobial targets RNA polymerase and the ribosome. This is the first report showing a role for protein chaperones in mediating AMR in mycobacteria. Given the widespread role of protein chaperones in enabling genomic diversity, we anticipate that our findings can be extended to other microbes.


EMBO Reports ◽  
2020 ◽  
Vol 21 (10) ◽  
Author(s):  
Adam Begeman ◽  
Ahyun Son ◽  
Theodore J Litberg ◽  
Tadeusz H Wroblewski ◽  
Thane Gehring ◽  
...  

2020 ◽  
Vol 21 (6) ◽  
pp. 2039 ◽  
Author(s):  
Valeriya V. Mikhaylova ◽  
Tatiana B. Eronina ◽  
Natalia A. Chebotareva ◽  
Vladimir V. Shubin ◽  
Daria I. Kalacheva ◽  
...  

The effect of protein chaperones HspB6 and the monomeric form of the protein 14-3-3ζ (14-3-3ζm) on a test system based on thermal aggregation of UV-irradiated glycogen phosphorylase b (UV-Phb) at 37 °C and a constant ionic strength (0.15 M) was studied using dynamic light scattering. A significant increase in the anti-aggregation activity of HspB6 and 14-3-3ζm was demonstrated in the presence of 0.1 M arginine (Arg). To compare the effects of these chaperones on UV-Phb aggregation, the values of initial stoichiometry of the chaperone–target protein complex (S0) were used. The analysis of the S0 values shows that in the presence of Arg fewer chaperone subunits are needed to completely prevent aggregation of the UV-Phb subunit. The changes in the structures of HspB6 and 14-3-3ζm induced by binding of Arg were evaluated by the fluorescence spectroscopy and differential scanning calorimetry. It was suggested that Arg caused conformational changes in chaperone molecules, which led to a decrease in the thermal stability of protein chaperones and their destabilization.


2020 ◽  
Vol 6 (1) ◽  
pp. eaaz1441 ◽  
Author(s):  
Joseph R. Daniele ◽  
Ryo Higuchi-Sanabria ◽  
Jenni Durieux ◽  
Samira Monshietehadi ◽  
Vidhya Ramachandran ◽  
...  

Longevity is dictated by a combination of environmental and genetic factors. One of the key mechanisms to regulate life-span extension is the induction of protein chaperones for protein homeostasis. Ectopic activation of the unfolded protein response of the endoplasmic reticulum (UPRER) specifically in neurons is sufficient to enhance organismal stress resistance and extend life span. Here, we find that this activation not only promotes chaperones but also facilitates ER restructuring and ER function. This restructuring is concomitant with lipid depletion through lipophagy. Activation of lipophagy is distinct from chaperone induction and is required for the life-span extension found in this paradigm. Last, we find that overexpression of the lipophagy component, ehbp-1, is sufficient to deplete lipids, remodel ER, and promote life span. Therefore, UPR induction in neurons triggers two distinct programs in the periphery: the proteostasis arm through protein chaperones and metabolic changes through lipid depletion mediated by EH domain binding protein 1 (EHBP-1).


2019 ◽  
Vol 47 (13) ◽  
pp. 6984-7002 ◽  
Author(s):  
Ingrid Rössler ◽  
Julia Embacher ◽  
Benjamin Pillet ◽  
Guillaume Murat ◽  
Laura Liesinger ◽  
...  

Abstract Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co-translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes.


2018 ◽  
Author(s):  
Joseph R. Daniele ◽  
Ryo Higuchi-Sanabria ◽  
Vidhya Ramachandran ◽  
Melissa Sanchez ◽  
Jenni Durieux ◽  
...  

ABSTRACTLongevity is dictated by a combination of environmental and genetic factors. One of the key mechanisms implicated in regulating lifespan extension is the ability to induce protein chaperones to promote protein homeostasis. However, it is unclear whether protein chaperones exclusively regulate longevity. Previous work has shown that activating the unfolded protein response of the endoplasmic reticulum (UPRER) in neurons can signal peripheral tissues to promote chaperone expression, thus enhancing organismal stress resistance and extending lifespan. Here, we find that this activation not only promotes chaperones, but facilitates a dramatic restructuring of ER morphology in intestinal cells. This restructuring, which includes depletion of lipid droplets, ER expansion, and ER tubulation, depends of lipophagy. Surprisingly, we find that lipophagy is required for lifespan extension and is completely independent of chaperone function. Therefore, UPR induction in neurons triggers two distinct programs in the periphery: the canonical arm through protein chaperones, and a non-canonical mechanism through lipid depletion. In summary, our study identifies lipophagy as an integral component of UPRER-induced longevity.


Sign in / Sign up

Export Citation Format

Share Document