scholarly journals Inspection method of combine assembly quality based on optimized VMD

2021 ◽  
Vol 2125 (1) ◽  
pp. 012021
Author(s):  
Menghui Xuan ◽  
Sixia Zhao ◽  
Mengnan Liu ◽  
Liyou Xu ◽  
Xiaoliang Chen

Abstract Aiming at the problems of low assembly accuracy and difficult to detect assembly quality of combine, a method of combine assembly quality detection based on sparrow search algorithm (SSA) optimized variational mode decomposition (VMD) and particle swarm optimization (PSO) optimized least squares support vector machine (LSSVM) was proposed, Firstly, the sparrow search algorithm is used to obtain the optimal VMD decomposition modal parameter K and penalty factor α, then the combined vibration signal of combine harvester is decomposed into intrinsic modal components of different center frequencies by using the best parameter combination [K, α]. Finally, the feature vector is used as the input of LSSVM classifier to classify different fault features. The analysis results show that the classification accuracy of SSA-VMD joint feature extraction method is 99.5%, which is 17.5% and 9.5% higher than ensemble empirical mode decomposition (EEMD) and fixed parameter VMD, which verifies the superiority of this method in the detection of combine assembly quality.

2018 ◽  
Vol 8 (10) ◽  
pp. 1754 ◽  
Author(s):  
Tongxiang Liu ◽  
Shenzhong Liu ◽  
Jiani Heng ◽  
Yuyang Gao

Wind speed forecasting plays a crucial role in improving the efficiency of wind farms, and increases the competitive advantage of wind power in the global electricity market. Many forecasting models have been proposed, aiming to enhance the forecast performance. However, some traditional models used in our experiment have the drawback of ignoring the importance of data preprocessing and the necessity of parameter optimization, which often results in poor forecasting performance. Therefore, in order to achieve a more satisfying performance in forecasting wind speed data, a new short-term wind speed forecasting method which consists of Ensemble Empirical Mode Decomposition (EEMD) for data preprocessing, and the Support Vector Machine (SVM)—whose key parameters are optimized by the Cuckoo Search Algorithm (CSO)—is developed in this paper. This method avoids the shortcomings of some traditional models and effectively enhances the forecasting ability. To test the prediction ability of the proposed model, 10 min wind speed data from wind farms in Shandong Province, China, are used for conducting experiments. The experimental results indicate that the proposed model cannot only improve the forecasting accuracy, but can also be an effective tool in assisting the management of wind power plants.


2022 ◽  
Vol 64 (1) ◽  
pp. 20-27
Author(s):  
Fengfeng Bie ◽  
Sheng Gu ◽  
Yue Guo ◽  
Gang Yang ◽  
Jian Peng

A gearbox vibration signal contains non-linear impact characteristics and the significant feature information tends to be overwhelmed by other interference components, which make it difficult to extract the typical fault features fully and effectively. Aiming at the key issue of how to effectively extract the impact characteristics, a fault diagnosis method based on improved extreme symmetric mode decomposition (ESMD) and a support vector machine (SVM) is proposed in this paper. The vibration signal is adaptively decomposed into multiple intrinsic mode function (IMF) components by the improved ESMD and then a certain number of components are selected with the maximum kurtosis-envelope spectrum index. The singular spectral entropy, energy entropy and permutation entropy of each component are applied to construct the feature vector set, in which the dimensionality of the set is reduced with the distance separability criterion. Finally, the dimension-reduced feature vector set is input into the SVM for pattern recognition. Dynamic simulation and experimental gearbox research show that the improved ESMD method can extract and identify gearbox fault information effectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jianfeng Zhang ◽  
Mingliang Liu ◽  
Keqi Wang ◽  
Laijun Sun

During the operation process of the high voltage circuit breaker, the changes of vibration signals can reflect the machinery states of the circuit breaker. The extraction of the vibration signal feature will directly influence the accuracy and practicability of fault diagnosis. This paper presents an extraction method based on ensemble empirical mode decomposition (EEMD). Firstly, the original vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs). Secondly, calculating the envelope of each IMF and separating the envelope by equal-time segment and then forming equal-time segment energy entropy to reflect the change of vibration signal are performed. At last, the energy entropies could serve as input vectors of support vector machine (SVM) to identify the working state and fault pattern of the circuit breaker. Practical examples show that this diagnosis approach can identify effectively fault patterns of HV circuit breaker.


2021 ◽  
pp. 147592172110574
Author(s):  
Jun Gu ◽  
Yuxing Peng ◽  
Hao Lu ◽  
Xiangdong Chang ◽  
Shuang Cao ◽  
...  

The performance of the rolling bearing of a spindle device is directly related to the safety and reliability of the operation of a mine hoist. To extract bearing vibration signal features effectively for fault diagnosis, a feature extraction method based on the parameter optimization of a variational mode decomposition (VMD) method and permutation entropy (PE) is proposed. In addition, a support vector machine (SVM) classifier is used to identify bearing fault types. An analogue signal is used to test the effect of noise and sampling frequency on VMD performance. Focused on the problem of the VMD method needing to determine the number of mode components K and a penalty factor α during the signal decomposition process, a genetic algorithm is used to optimize the parameter combination [K,α] with the minimum sample entropy as the indicator. By using mean squared error (MSE) and correlation coefficient, an evaluation indicator is constructed to determine the decomposition effects of the optimized VMD, centre frequency, empirical mode decomposition (EMD) and ensemble EMD (EEMD) methods. The normalized PE of the five mode components is used as an eigenvalue, which is used as the input parameter of the SVM. Two different experimental datasets are used to verify the effectiveness of the proposed method. The results show that the proposed method has better diagnostic accuracy than EMD, EEMD and a BP neural network in the case of limited samples and unknown sample inputs. It can provide a good reference for the diagnosis of a rolling bearing and has practical application value.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 209 ◽  
Author(s):  
Shaohua Xue ◽  
Jianping Tan ◽  
Lixiang Shi ◽  
Jiwei Deng

Fault diagnosis of rope tension is significantly important for hoisting safety, especially in mine hoists. Conventional diagnosis methods based on force sensors face some challenges regarding sensor installation, data transmission, safety, and reliability in harsh mine environments. In this paper, a novel fault diagnosis method for rope tension based on the vibration signals of head sheaves is proposed. First, the vibration signal is decomposed into some intrinsic mode functions (IMFs) by the ensemble empirical mode decomposition (EEMD) method. Second, a sensitivity index is proposed to extract the main IMFs, then the de-noised signal is obtained by the sum of the main IMFs. Third, the energy and the proposed improved permutation entropy (IPE) values of the main IMFs and the de-noised signal are calculated to create the feature vectors. The IPE is proposed to improve the PE by adding the amplitude information, and it proved to be more sensitive in simulations of impulse detecting and signal segmentation. Fourth, vibration samples in different tension states are used to train a particle swarm optimization–support vector machine (PSO-SVM) model. Lastly, the trained model is implemented to detect tension faults in practice. Two experimental results validated the effectiveness of the proposed method to detect tension faults, such as overload, underload, and imbalance, in both single-rope and multi-rope hoists. This study provides a new perspective for detecting tension faults in hoisting systems.


2014 ◽  
Vol 680 ◽  
pp. 198-205 ◽  
Author(s):  
Xiao Lin Wang ◽  
Wei Hua Han ◽  
Han Gu ◽  
Cun Hu ◽  
Xing Xing Han

In order to extract the faint fault information from complicated vibration signal of bearing, the correlated kurtosis is introduced into the field of rolling bearing fault diagnosis. Combined with ensemble empirical mode decomposition (EEMD) and correlated kurtosis, a feature extraction method is proposed. According to the method, by EEMD processing a group of intrinsic mode functions (IMFs) are obtained, then the IMF with maximal correlated kurtosis is selected, and the weak fault signal is clearly extracted. The effectiveness of the method is demonstrated on both simulated signal and actual data.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3125
Author(s):  
Zou ◽  
Chen ◽  
Liu

Considering the lack of precision in transforming measured micro-electro-mechanical system (MEMS) accelerometer output signals into elevation signals, this paper proposes a bridge dynamic displacement reconstruction method based on the combination of ensemble empirical mode decomposition (EEMD) and time domain integration, according to the vibration signal traits of a bridge. Through simulating bridge analog signals and verifying a vibration test bench, four bridge dynamic displacement monitoring methods were analyzed and compared. The proposed method can effectively eliminate the influence of low-frequency integral drift and high-frequency ambient noise on the integration process. Furthermore, this algorithm has better adaptability and robustness. The effectiveness of the method was verified by field experiments on highway elevated bridges.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


Sign in / Sign up

Export Citation Format

Share Document