scholarly journals Synthesis of High Molecular Weight Stereo-Di-Block Copolymers Driven by a Co-Initiator Free Catalyst

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 232
Author(s):  
Carmen Moya-Lopez ◽  
Ivan Bravo ◽  
José A. Castro-Osma ◽  
David Chapron ◽  
Patrice Bourson ◽  
...  

Stereo-diblock copolymers of high molecular weight polylactide (PLA) were synthetized by the one pot-sequential addition method assisted by a heteroscorpionate catalyst without the need of a co-initiator. The alkyl zinc organometallic heteroscorpionate derivative (Zn(Et)(κ3-bpzteH)] (bpzteH = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-para-tolylethoxide) proved to assist in the mechanism of reaction following a coordination-insertion process. Kinetic studies along with the linear correlation between monomer and number average molecular weight (Mn) conversion, and the narrow polydispersities supported the truly living polymerization character of the initiator, whereas matrix-assisted laser desorption/Ionization-time of flight (MALDI-TOF) studies showed a very low order of transesterification. The high stereo-control attained for the afforded high molecular weight derivatives was revealed by homonuclear decoupled 1H NMR spectra and polarimetry measurements. The nanostructure of the PLA derivatives was studied by both wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) and the stereocomplex phase of the PLA stereo-diblock copolymers was successfully identified.

2018 ◽  
Vol 31 (1) ◽  
pp. 63-71 ◽  
Author(s):  
AE Soldatova ◽  
AY Tsegelskaya ◽  
GK Semenova ◽  
TS Kurkin ◽  
PV Dmitryakov ◽  
...  

High-temperature thermoplastic semicrystalline polyamide imide (PAI) with Tg = 250°C, and Tm = 370°C was synthesized from 4,4’-diaminobenzanilide, and 2,2-propylidene-bis (1,4-phenyleneoxy) diphthalic anhydride using three different methods: one-pot high-temperature catalytic polycondensation in molten benzoic acid (BA), low-temperature polycondensation (LTP) in dimethylacetamide (DMAA) followed by chemical imidization, and LTP followed by imidization. The influence of the synthetic route on the crystallinity of PAI was studied by wide-angle X-ray scattering. The PAI synthesized in molten BA comprised a reactive oligomer, which on heating up to 360°C easily transformed into high-molecular-weight PAI. The thermal and rheological properties of the high-molecular-weight PAI thus prepared were studied using differential scanning calorimetry, trimellitic acid, thermogravimetric analysis, and capillary viscosimetry. The rheological characteristics indicate that the obtained PAI can be melt processed by extrusion and hot pressing at 370–380°C.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 591
Author(s):  
Bożena Grimling ◽  
Bożena Karolewicz ◽  
Urszula Nawrot ◽  
Katarzyna Włodarczyk ◽  
Agata Górniak

Chitosans represent a group of multifunctional drug excipients. Here, we aimed to estimate the impact of high-molecular weight chitosan on the physicochemical properties of clotrimazole–chitosan solid mixtures (CL–CH), prepared by grinding and kneading methods. We characterised these formulas by infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffractometry, and performed in vitro clotrimazole dissolution tests. Additionally, we examined the antifungal activity of clotrimazole–chitosan mixtures against clinical Candida isolates under neutral and acid conditions. The synergistic effect of clotrimazole and chitosan S combinations was observed in tests carried out at pH 4 on Candida glabrata strains. The inhibition of C. glabrata growth reached at least 90%, regardless of the drug/excipient weight ratio, and even at half of the minimal inhibitory concentrations of clotrimazole. Our results demonstrate that clotrimazole and high-molecular weight chitosan could be an effective combination in a topical antifungal formulation, as chitosan acts synergistically with clotrimazole against non-albicans candida strains.


1955 ◽  
Vol 28 (2) ◽  
pp. 504-507
Author(s):  
G. W. Drake

Abstract Fractionation of the rubber hydrocarbon in temperate climates has usually resulted in high molecular-weight fractions, with a molecular weight of the order of one million. Bloomfield has shown that fresh latex contains a considerable proportion of hydrocarbon having an intrinsic viscosity (η) of 10 or over and, therefore, a molecular weight of well over 106. The fractionation technique used by Bloomfield in Malaya has now been applied by the writer to smoked sheet and to F rubber, working in the United Kingdom. No very high molecular-weight fractions were found in the smoked sheet, but the F rubber yielded a fraction of (η)=7.3 and a number average molecular weight 6×106, determined osmometrically. The average molecular weight of natural rubber when freshly prepared is probably well over a million, and includes a substantial portion having a molecular weight of several millions. By the time smoked sheet has reached temperate climates, the high molecular-weight portion has probably been converted to gel. F rubber, presumably because of its different method of preparation, retains the major part of its high molecular-weight material during prolonged storage.


2020 ◽  
Vol 40 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Homa Maleki ◽  
Hossein Barani

AbstractThe stereocomplex formation is a promising method to improve the properties of poly(lactide) (PLA)-based products due to the strong interaction of the side-by-side arrangement of the molecular chains. Recently, electrospinning method has been applied to prepare PLA stereocomplex, which is more convenient. The objective of the current study is to make stereocomplexed PLA nanofibers using electrospinning method and compare their properties and structures with pure poly(l-lactide) (PLLA) fibers. The stereocomplexed fibers were electrospun from a blend solution of high molecular weight PLLA and poly(d-lactide) (1:1 ratio). The morphology of the obtained electrospun fibers was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Differential scanning calorimetry was applied to study their thermal properties and crystallinity. Fourier transform infrared spectroscopy (FTIR) test was conducted on the samples to characterize their chemical properties. The SEM and AFM images indicated that smooth uniform fibers with a cylindrical structure were produced. Besides, the FTIR results and thermal properties confirmed that only stereocomplex crystallites formed in the resulting fibers via the electrospinning method.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Kim Seok Hoon ◽  
Kim Joon Ho

AbstractSolid-state polymerization has been widely used to prepare high molecular weight poly(ethylene terephthalate). Solid-state polymerization is generally carried out by heating solid, melt-phase-polymerized polymer below its melting temperature but above its glass transition temperature. Solid-state polymerization of poly(trimethylene terephthalate)(PTT) is not an independent process but rather an additional process with respect to melt polymerization that is used when PTT of a higher molecular weight is required. Two kinds of commercial PTT chips were polymerized in the solid state to prepare high molecular weight PTT, which were characterized by end group contents, molecular weight, thermal analysis and X-ray diffraction. In the solid-state polymerization of PTT, the overall reaction rate was governed by the reaction temperature, reaction time and pellet size. The content of carboxyl end groups was decreased during the solid-state polymerization with increasing reaction time and temperature. The melting temperature and crystallinity of solid-state-polymerized PTT were higher at longer times and higher temperatures of polymerization. The activation energy for the solid-state polymerization of PTT was in the range of 24~25 kcal/mol for each chip. Through the solid-state polymerization of commercial PTT chips, we could get high molecular weight polymers up to an intrinsic viscosity value of 1.63 dl/g, which is equivalent to about a 117,000 weight-average molecular weight.


2016 ◽  
Vol 36 (8) ◽  
pp. 853-860 ◽  
Author(s):  
Vahabodin Goodarzi ◽  
Zahed Ahmadi ◽  
Mohammad Reza Saeb ◽  
Farkhondeh Hemmati ◽  
Mehdi Ghaffari ◽  
...  

Abstract Since polyethylene (PE) has been widely accepted for the production of high-pressure fluid conveying pipelines, studies devoted to weldability of PE connections were always of major importance. In this study, two industrial PE grades designed for pipe production, namely PE80 and PE100, were injection molded, cut, and then welded as PE100-PE100, PE100-PE80, and PE80-PE80. The heat-welded joints were assessed by differential scanning calorimetry and tensile measurements. The results obtained from thermal and mechanical analyses were compared with equivalents for aged samples. Thermal analysis revealed that the melting point of the PE100-PE100 sample is obviously larger than the one for the PE80-PE80 joint, for the PE80 chains deteriorate the crystallization of PE100. Further, the PE80-PE80 sample showed the lowest lamellar thickness and crystalline molecular weight among the studied joints. The aging process was found to increase lamellar thickness and molecular weight, though in the PE100-PE100 sample such quantities very limitedly increased. The yield stress of aged joints was higher than that for just-prepared samples, while an inverse trend was seen for strain at break. From a practical viewpoint, the PE100-PE100 welds offer better properties.


1989 ◽  
Vol 175 ◽  
Author(s):  
J. E. McGratn ◽  
K. L. Cooper ◽  
W. Waehamad ◽  
H. Huang ◽  
G. L. Wilkes

AbstractCarboxyl functional poly(arylene ether) oligomers of controlled number average molecular weight were synthesized via nucleophilic aromatic substitution step polymerization using p-hydroxy benzoic acid as the molecular weight and end group controlling reagents. The subsequent functionalized polyarylene ethers were copolymerized with acetoxy benzoic acid or acetoxyphenoxy benzoic acid via melt acidolysis procedures. Successful copolymers were generated using chlorobenzene as a solvent for the first s age of the reaction followed by melt reaction at temperatures as high as 325°C. Resulting copolymer composition and segment size were investigated. It was possible to prepare improved solvent resistant copolymers through incorporation of the liquid crystal polyester (LCP) segment. Extraction tests using boiling chloroform showed that a high percentage of segmented copolymer were generated. Swelling characteristics were also noted and were observed to decrease as a function of the LCP concentration utilized. Multiple transitions were observed in differential scanning calorimetry consistent with Tg's, Tm's and possibly with liquid crystal transitions. Optical microscopy showed an ordered microstructure developed which is consistent with the presence of liquid crystalline phases. The materials were successfully compression molded to afford tough coherent films at all compositions, implying the likelihood of improved compressive strength relative to the LCP homo- or copolyesters.


2015 ◽  
Vol 44 (1) ◽  
pp. 19-25
Author(s):  
T. Maity ◽  
B.C. Samanta

Purpose – The purpose of this paper was to check effectiveness of amine functional chloroaniline acetaldehyde condensate (AFCAC) as a new curing agent for diglycidyl ether of bisphenol A (DGEBA) resin. For this purpose, first AFCAC was synthesised, characterised and then curing reaction was carried out. Design/methodology/approach – Equimolecular mixture of AFCAC and DGEBA was subjected to curing reaction, and the reaction was followed by differential scanning calorimetry (DSC) analysis. The kinetic studies of this curing reaction were also carried out from those DSC exotherms. The mechanical properties, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) of cured epoxy were also reported. Findings – DSC results reflected the effective first order curing reaction of AFCAC with epoxy resin. Mechanical properties reflected appreciable rigidity of AFCAC cured epoxy matrix and TGA showed that the cured epoxy networks were thermally stable up to around 297°C. Research limitations/implications – The curing agent AFCAC was synthesised by using chloroaniline and acetaldehyde in acid medium. There are some limitations for this procedure. The synthetic procedure is pH dependent. So reaction cannot be done at any pH value. The reaction must also be carried out at room temperature without any heating. To obtain low molecular weight curing agent, chloroaniline and acetaldehyde cannot be taken in equimolecular ratio because the equimolecular mixture of them produces high molecular weight condensate. This was shown in our previous publication. Some implications are also there. By changing amine and aldehyde other curing agents could be synthesised and the curing efficiency of those for epoxy resin could also be studied. Originality/value – Experimental results revealed the greater suitability of AFCAC as curing agent for DGEBA resin and novelty of AFCAC cured matrix in the field of protective coating, casting, adhesives, etc.


2008 ◽  
Vol 8 (6) ◽  
pp. 3123-3135 ◽  
Author(s):  
Pradip Paik ◽  
Kamal K. Kar

The high molecular weight (MW) polyethylene (PE) particles of particle size varied from macro to micron to nanometer were synthesized by Grignard reagent. The microscopy analysis (scanning electron microscope, SEM; transmission electron microscope, TEM; and atomic force microscope, AFM) shows the spherical shape of PE particles. The effects of particle size, varies from macro to nanometer scale on crystal structure, crystallinity (χc), glass transition temperature (Tg), melting temperature (Tm), surface roughness and mechanical properties were studied. Differential scanning calorimetry (DSC) experiments show that the nanoparticles of PE are highly crystalline (χc ≈ 72%). The crystal length of PE nanoparticles is found to be approximately 14 Å. Although the Gibbs-Thomson equation is explained the depression of melting temperature (ΔTm) by 5 °C, the impervious results of Tg are still not fully understood. The low roughness value (2 Å) proves the presence of "atomic-scale-chain" folding at the surface of PE nanoparticles. A novel protocol is developed, and the elastic modulus of individual nanospherical PE particles is computed from 'force-distance' mapping curves of AFM. Hemispherical tungsten (W) tip was fabricated from focused ion beam and used as an indenter to measure the mechanical properties. It is found that the nano sized PE particles have higher elastic modulus (E = 1.2–1.4 GPa) compared to the bulk or macro sized PE (E = 0.6–0.7 GPa). The results corroborate the robustness of our experiments, since, the analogous results for macro sized particles match well with the literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tengiz Kantaria ◽  
Temur Kantaria ◽  
Giorgi Titvinidze ◽  
Giuli Otinashvili ◽  
Nino Kupatadze ◽  
...  

High-molecular-weight AA-BB-type aliphatic polyesters were synthesizedviaCu(I)-catalyzed click step-growth polymerization (SGP) following a new synthetic strategy. The synthesis was performed between diyne and diazide monomers in an organic solvent as one pot process using three components and two stages. The dipropargyl esters of dicarboxylic acids (component 1) were used as diyne monomers, di-(bromoacetic acid)-alkylene diesters (component 2) were used as precursors of diazide monomers, and sodium azide (component 3) was used for generating diazide monomers. The SGP was carried out in two steps: at Step  1 dibromoacetates interacted with two moles of sodium azide resulting in diazide monomers which interacted in situ with diyne monomers at Step  2 in the presence of Cu(I) catalyst. A systematic study was done for optimizing the multiparameter click SGP in terms of the solvent, duration of both Step  1 and Step  2, solution concentration, catalyst concentration, catalyst and catalyst activator (ligand) nature, catalyst/ligand mole ratio, and temperature of both steps of the click SGP. As a result, high-molecular-weight (MWup to 74 kDa) elastic film-forming click polyesters were obtained. The new polymers were found suitable for fabricating biodegradable nanoparticles, which are promising as drug delivery containers in nanotherapy.


Sign in / Sign up

Export Citation Format

Share Document