hurwitz matrix
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (2) ◽  
pp. 15-29
Author(s):  
Yuliya Lvovna Gordeeva ◽  
Aleksey Georgievich Borodkin ◽  
Elena Lvovna Gordeeva ◽  
Yuriy Alekseevich Komissarov

The article presents the calculated ratios of indicators determining the stationary states of the lactic acid production process. Three technologies that are most often mentioned in scientific publications are identified: the technology of using strains of microorganisms to produce biomass is a technology that is extremely rarely used; the fairly common technology of using strains of microorganisms to produce lactic acid with the consumption of the main substrate (most often glucose); the promising technology of obtaining lactic acid using, in addition to the main substrate, a component that reproduces the main substrate in the synthesis process. For each technology, the equations of material balance for stationary and non-stationary conditions, a generalized differential equation for non-stationary conditions, and a characteristic equation are given. The formulas for estimating the coefficients of differential equations and the coefficients of the characteristic equation are also given. The equations for non-stationary conditions according to the last two technologies are based on the use of the Taylor series expansion of functions with the preservation of only the first terms of the expansion, i. e. deviations from stationarity in small. The characteristic equation is formed using the eigenvalues . The methodology for all three technologies is given, which allows us to assess the stability of the considered stationary state – the Hurwitz method. For all three technologies, numerical results are obtained for estimating the coefficients of the characteristic equations Pi. Tabular values of the coefficients are given, according to which stability estimates for the dilution rate of 0.1 h–1, 0.2 h–1, 0.3 h–1 are obtained using determinants according to the Hurwitz matrix. The results of numerical estimates for the stability of stationary states for all three technologies are presented. The estimates were based on the indicators of constants published in scientific studies.


Author(s):  
Irina Dmitrievna Kostrub

The concepts of Hurwitz, Lyapunov and Dirichlet matrices are introduced for the convenience of the stability of linear systems with constant coefficients. They allow us to describe all the cases of interest in the stability theory of linear systems with constant coefficients. A similar classification is proposed for systems of linear differential equations with periodic coefficients. Monodromy matrices of such systems can be either Hurwitz matrices or Lyapunov matrices or Dirichlet matrices (in the discrete sense) in a stable case. The new material relates to systems with variable coefficients.


Author(s):  
Aleksey Georgievich Borodkin ◽  
Elena Lvovna Gordeeva ◽  
Yuliya Lvovna Gordeeva ◽  
Yuriy Alekseevich Komissarov

The authors of the article produce the algorithm to evaluate the stability of the steady states for microbiological synthesis using mathematical models for kinetics based on the unstructured approach. The object under study is a continuous biotechnological process aiming to obtain a target product, in addition to biomass. The estimation of stability is performed using Hurwitz matrix. In this process the use of raw materials containing components for additional producing of the primary substrate are possible. The algorithm includes five steps: formulation of the mathematical model that takes into account biological and technological limits; definition of steady states (one or several) for which it is necessary to evaluate conditions of stability and to calculate process parameters for the adopted steady states resulted from solving a system of nonlinear algebraic equations of the mathematical model; formulation of the equations of the first approximation (the system of first-order linear differential equations with constant coefficients) and evaluation of the coefficients corresponding to the adopted steady states; formation of Hurwitz matrix and calculation of its items; calculation of necessary and sufficient conditions for stability using Hurwitz matrix. Two methods of calculating Hurwitz matrix have been shown. The first method is implemented by transforming the system of four differential equations of the first approximation into one fourth-order ordinary differential equation. In the course of transformation there were determined calculated ratios for coefficients of the matrix. In the second method the coefficients are calculated by solving vector equation for the system of first approximation with the introduction of eigen values. The algorithm has been used for evaluating steady states of microbiological synthesis for lactic acid production from raw materials containing the component reproducing the main substrate. The estimation has been carried out for two steady states, one of which is optimal. For numerical values of the constants (from the literature) both steady states were stable.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Edgar-Cristian Díaz-González ◽  
Baltazar Aguirre-Hernández ◽  
Jorge Antonio López-Rentería ◽  
Eric Campos-Cantón ◽  
Carlos Arturo Loredo-Villalobos

We present an approach to generate multiscroll attractors via destabilization of piecewise linear systems based on Hurwitz matrix in this paper. First we present some results about the abscissa of stability of characteristic polynomials from linear differential equations systems; that is, we consider Hurwitz polynomials. The starting point is the Gauss–Lucas theorem, we provide lower bounds for Hurwitz polynomials, and by successively decreasing the order of the derivative of the Hurwitz polynomial one obtains a sequence of lower bounds. The results are extended in a straightforward way to interval polynomials; then we apply the abscissa as a measure to destabilize Hurwitz polynomial for the generation of a family of multiscroll attractors based on a class of unstable dissipative systems (UDS) of affine linear type.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Elena Adomaitienė ◽  
Skaidra Bumelienė ◽  
Gytis Mykolaitis ◽  
Arūnas Tamaševičius

We suggest employing the first-order stable RC filters, based on a single capacitor, for control of unstable fixed points in an array of oscillators. A single capacitor is sufficient to stabilize an entire array, if the oscillators are coupled strongly enough. An array, composed of 24 to 30 mean-field coupled FitzHugh–Nagumo (FHN) type asymmetric oscillators, is considered as a case study. The investigation has been performed using analytical, numerical, and experimental methods. The analytical study is based on the mean-field approach, characteristic equation for finding the eigenvalue spectrum, and the Routh–Hurwitz stability criteria using low-rank Hurwitz matrix to calculate the threshold value of the coupling coefficient. Experiments have been performed with a hardware electronic analog, imitating dynamical behavior of an array of the FHN oscillators.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Iván D. Díaz-Rodríguez ◽  
Gerardo Romero ◽  
Cesar Elizondo

The main focus of this paper is to analyze the robust stability property for a class of time-delay systems when parametric polynomic uncertainty is considered. The analysis is made by replacing the time-delay part with an auxiliary equation and then using the sign definite decomposition to deal with the polynomic parametric uncertainty. Also, it is shown that it is possible to verify the robust stability property by first obtaining the Hurwitz matrix from the characteristic equation for this class of systems and then checking the leading principal minors positivity using the sign definite decomposition. Finally, an algorithm codified in MATLAB is used to evaluate and graphically show the robust stability property. This is shown by a series of points that were calculated using the sign definite decomposition.


Author(s):  
Sayyid Mahdi Alavinia ◽  
Mohammad Ali Sadrnia ◽  
Mohammad Javad Khosrowjerdi ◽  
Mohammad Mehdi Fateh

In this paper, a dynamic neural network (DNN) based on robust identification scheme is presented to determine compressor surge point accurately using sensor fault detection (FD). The main innovation of this paper is to present different and complementary technique for surge suppressing studies within sensor FD. The proposed method aims to utilize the embedded analytical redundancies for sensor FD, even in the presence of uncertainty in the compressor and sensor noise. The robust dynamic neural network is developed to learn the input–output map of the compressor for residual generation and the required data is obtained from the compressor Moore–Greitzer simulated model. Generally, the main drawback of DNN method is the lack of systematic law for selecting of initial Hurwitz matrix. Therefore, the subspace identification method is proposed for selecting this matrix. A number of simulation studies are carried out to demonstrate the advantages, capabilities, and performance of our proposed FD scheme and a worthwhile direction for future research is also presented.


2013 ◽  
Vol 459 ◽  
pp. 212-221 ◽  
Author(s):  
G. Romero ◽  
A. Palacios ◽  
J. Rivera ◽  
I. Pérez ◽  
D. Lara ◽  
...  

This paper presents new results to compute the time-delay margin of the hot-dip galvanizing control system. Compared to previous works on this issue, this paper considers a mathematical model of the plant with two inputs and one output. The inputs are used to regulate the output, which represents the Zinc mass coating of steel strip. To achieve this objective, a multivariable PI controller is used, this controller is tuned applying the well known Ziegler and Nichols method, and then the maximum time-delay is computed in order to guarantee the stability property of the close loop control system. The work bases its results on a transformation of the time-delay operator and it is performed in order to get a two variable polynomial; after this, to obtain the robust stability property, a result based on the Hurwitz matrix is applied.


Sign in / Sign up

Export Citation Format

Share Document