slope system
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Haoyu Dong ◽  
Jiading Wang ◽  
Dengfei Zhang ◽  
Yuanjun Xu ◽  
Zhenxiao Li

The angle of repose in soil particles plays a key role in slope stability. There was a need for the investigation on the association between the angle of repose in loess particles and the angle of slopes. The fixed funnel methods with different particle sizes were carried out. The pressure of particle gravity weight was obtained based on the vibration stacking test. Four contact structures in loess particles were put forward including the triangular pyramid contact structure (TS), rectangular pyramid contact structure (RS), pentagonal pyramid contact structure (PS), and hexagon contact structure (HS). The particles transformed successively in four kinds of contact structures. The transformation of entropy value of the particles in different accumulation areas was discussed during the process of accumulation. The relationship between the natural angle of repose and the evolution of the contact structures was established. Combined with the existing experimental conclusion that loess particles transform in four stable states, in turn, the reason that the friction angle of uniform sand particles proposed by Shields in 1936 is 33° was explained. The formation theory of the loess angle of repose was well extended to speculate the formation process of the loess slope system. It is verified that loess slopes were mainly distributed under 30°.


2022 ◽  
Vol 21 (4) ◽  
pp. 300-307
Author(s):  
P. P Gaidzhurov ◽  
N. A. Saveleva ◽  
E. V. Trufanova

Introduction. The concept of estimating the dynamic parameters of the “base — weakened layer — block” system is proposed, taking into account the physical nonlinearity of the material and the kinematic method of excitation of vibrations. In accordance with this approach, the physical nonlinearity of the base and block material is considered using the Drucker- Prager model. The weakened layer is modeled by 3D spring finite elements. The verification procedure of the proposed methodology is carried out on the example of the dynamic calculation of the “base — weakened layer — slope” system.Materials and Methods. The computational experiments were performed using the ANSYS Mechanical software package in combination with a nonlinear solver based on the Newton-Raphson procedure. SOLID45 volumetric finite elements were used to discretize the computational domains. Combined elastic-viscous elements COMBIN14 were used to simulate the displacement of the block relative to the fixed base.Results. An engineering technique for the dynamic analysis of the stress-strain state of the “base — weakened layer — block” spatial system with kinematic method of excitation of vibrations is developed. The accuracy and convergence of the proposed method is investigated using specific numerical examples.Discussion and Conclusion. Based on the mathematic simulation performed, it is shown that the developed technique provides assessing the risks of the occurrence of real landslide processes caused by external non-stationary impacts.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1270
Author(s):  
Yun Bai ◽  
Mingming Guo ◽  
Hongliang Kang ◽  
Wenlong Wang ◽  
Huan Su ◽  
...  

Severe gully erosion on spoil dumps, caused by dense concentrated flow derived from platforms, poses a significant threat to the land management of mining areas. However, little is known about the development processes and mechanisms of gullies on spoil dumps. A flow scouring experiment was conducted on an established platform–slope system under 3.6–5.04 m3 h−1. The soils of the system consisted of a surface sandy loam A layer and anunderlying clay loam B layer. The results showed that the platform exhibited a gully development process of headcut-incision–headcut-expansion–stabilization and the steep slope experienced gully development of A-layer incision–A-layer expansion–B-layer incision–stabilization. The results showed 88.97–100% of Froude Number (Fr) decrement and 47.90–88.97% of Darcy–Weisbach roughness coefficient increment finished in the two incision stages on the steep slope. Gully depth has the most sensitive response to flow hydraulics. A significant linear correlation exists between gully depth and shear stress, runoff power, Fr, and Reynolds Number (R2 > 0.337). Overall, the optimal hydraulic indicator varies within different stages for describing the gully morphology development, illustrating the different action mechanism between flow hydraulics and gully morphology. Our findings provide a theoretical support for future mechanistic studies of gully erosion and the land management on spoil dump.


2021 ◽  
pp. 105882
Author(s):  
S. Todaro ◽  
A. Sulli ◽  
D. Spatola ◽  
A. Micallef ◽  
P. Di Stefano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document