cobble beach
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 1)

2019 ◽  
Vol 18 (4) ◽  
pp. 868-882 ◽  
Author(s):  
Fangfang Shu ◽  
Feng Cai ◽  
Hongshuai Qi ◽  
Jianhui Liu ◽  
Gang Lei ◽  
...  
Keyword(s):  

2018 ◽  
Vol 34 (6) ◽  
pp. 1367 ◽  
Author(s):  
Nans Bujan ◽  
Rónadh Cox ◽  
Li-Ching Lin ◽  
Cécile Ducrocq ◽  
Hwung-Hweng Hwung
Keyword(s):  

2018 ◽  
Vol 10 (8) ◽  
pp. 1253 ◽  
Author(s):  
Hironori Matsumoto ◽  
Adam Young

Cobbles (64–256 mm) are found on beaches throughout the world, influence beach morphology, and can provide shoreline stability. Detailed, frequent, and spatially large-scale quantitative cobble observations at beaches are vital toward a better understanding of sand-cobble beach systems. This study used a truck-mounted mobile terrestrial LiDAR system and a raster-based classification approach to map cobbles automatically. Rasters of LiDAR intensity, intensity deviation, topographic roughness, and slope were utilized for cobble classification. Four machine learning techniques including maximum likelihood, decision tree, support vector machine, and k-nearest neighbors were tested on five raster resolutions ranging from 5–50 cm. The cobble mapping capability varied depending on pixel size, classification technique, surface cobble density, and beach setting. The best performer was a maximum likelihood classification using 20 cm raster resolution. Compared to manual mapping at 15 control sites (size ranging from a few to several hundred square meters), automated mapping errors were <12% (best fit line). This method mapped the spatial location of dense cobble regions more accurately compared to sparse and moderate density cobble areas. The method was applied to a ~40 km section of coast in southern California, and successfully generated temporal and spatial cobble distributions consistent with previous observations.


2014 ◽  
Vol 2 (2) ◽  
pp. 443-453 ◽  
Author(s):  
A. E. Hay ◽  
L. Zedel ◽  
N. Stark

Abstract. Results are presented from a pilot study of shore-face sediment dynamics on a steep, poorly sorted, coarse-grained, megatidal beach at the head of the Bay of Fundy, Nova Scotia, Canada. The experiment involved the first field deployment of a prototype wideband, pulse-coherent, bistatic acoustic Doppler profiling system. Measurements of the vertical structure of flow and turbulence above a sloping bed, as well as bed material velocity, demonstrate the capabilities of this instrument vis-à-vis studies of nearshore sediment dynamics at the field scale. The second focus of the paper is the unexpected observation that the surficial sediment median diameter, across the lower two-thirds of the intertidal zone, underwent a pronounced decrease when wave forcing was more energetic, compared to values observed during calmer conditions. The explanation for this result appears to involve the formation – in wave-dominated conditions – of metre-scale wavelength, 20 cm high ripples on the rising tide, which are then planed flat by the swash and/or the shore break on the subsequent ebb.


2014 ◽  
Vol 2 (1) ◽  
pp. 117-152 ◽  
Author(s):  
A. E. Hay ◽  
L. Zedel ◽  
N. Stark

Abstract. Results are presented from a pilot study of shoreface sediment dynamics on a steep, poorly sorted, coarse-grained, mega-tidal beach at the head of the Bay of Fundy, Nova Scotia, Canada. The experiment involved the first field deployment of a prototype wide- band, pulse-coherent, bistatic acoustic Doppler profiling system. Measurements of the vertical structure of flow and turbulence above a sloping bed, as well as bed material velocity, demonstrate the capabilities of this instrument vis-a-vis studies of nearshore sediment dynamics at the field scale. The second focus of the paper is the surprising observation that the surficial sediment median diameter, across the lower two-thirds of the intertidal zone, underwent a pronounced decrease when wave forcing was more energetic, compared to values observed during calmer conditions. The explanation for this result appears to involve the formation – in wave-dominated conditions – of O(1 m)-wavelength, 20 cm high ripples on the rising tide, which are then planed flat by the swash and/or the shorebreak on the subsequent ebb.


2010 ◽  
Vol 2010 ◽  
pp. 1-22 ◽  
Author(s):  
Curt D. Peterson ◽  
Harry M. Jol ◽  
Tom Horning ◽  
Kenneth M. Cruikshank

The Seaside beach ridge plain was inundated by six paleotsunamis during the last ~2500 years. Large runups (adjusted >10 m in height) overtopped seawardmost cobble beach ridges (7 m elevation) at ~1.3 and ~2.6 ka before present. Smaller paleotsunami (6–8 m in height) likely entered the beach plain interior (4-5 m elevation) through the paleo-Necanicum bay mouth. The AD 1700 Cascadia paleotsunami had a modest runup (6-7 m height), yet it locally inundated to 1.5 km landward distance. Bed shear stresses (100–3,300 dyne cm−2) are estimated for paleotsunami surges (0.5–2 m depths) that flowed down slopes (0.002–0.017 gradient) on the landward side of the cobble beach ridges. Critical entrainment shear stresses of 1,130–1,260 dyne cm−2 were needed to dislodge the largest clasts (26–32 cm diameter) in paleotsunami coulees that were cut (100–200 m width) into the landward side of the cobble ridges.


Oecologia ◽  
2008 ◽  
Vol 158 (3) ◽  
pp. 473-483 ◽  
Author(s):  
William M. Goldenheim ◽  
Andrew D. Irving ◽  
Mark D. Bertness

Author(s):  
J. R. Gallego ◽  
L. Fernndez ◽  
J. R. Fernndez ◽  
F. Dez-Sanz ◽  
S. Ordoez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document