mouse islet
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 14)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 2 (3) ◽  
pp. 100728
Author(s):  
Yun-Xia Zhu ◽  
Yun-Cai Zhou ◽  
Yan Zhang ◽  
Peng Sun ◽  
Xiao-Ai Chang ◽  
...  

2021 ◽  
Vol 20 (9) ◽  
pp. 4507-4517 ◽  
Author(s):  
Sam G. Galvin ◽  
Richard G. Kay ◽  
Rachel Foreman ◽  
Pierre Larraufie ◽  
Claire L. Meek ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chunxia Jiang ◽  
Yuping Wang ◽  
Man Guo ◽  
Yang Long ◽  
Jiao Chen ◽  
...  

Background. Diabetes mellitus is a clinical syndrome caused by genetic and environmental factors. Growing evidence suggests that exposure to environmental endocrine disruptors and activation of NLRP3 inflammasome signaling play a vital role in diabetes. However, it is unclear how PCB118, a common environmental endocrine disruptor, contributes to the incidence of diabetes, and its specific mechanism of action is unknown. In this study, we explored whether ROS-induced NLRP3 inflammasome priming and activation were related to PCB118 exposure in mouse islet β-TC-6 cells and the mechanisms of diabetes. Methods. Mouse islet β-TC-6 cells were cultured with PCB118 as a stimulating factor and ROS inhibitor N-acetyl cysteine (NAC) as an intervention. Cellular toxicity due to PCB118 was detected using the Cell Counting Kit-8; ROS was measured using DCFH-DA; the expressions of NLRP3, procaspase-1, caspase-1, pro-IL-1β, and IL-1β protein were detected by western blot; and IL-6, IL-18, and C-C chemokine ligand 2 (CCL-2) were measured by ELISA. Results. PCB118 caused significant toxicity to the cells when the stimulation concentration was equal to or greater than 80 nmol/L at 72 hours ( p < 0.05 ) and increased the levels of ROS, NLRP3, caspase-1, IL-1β, IL-6, IL-18, and CCL-2 ( p < 0.05 ); the expressions of procaspase-1 and pro-IL-1β were downregulated in a dose-dependent manner after PCB118 exposure ( p < 0.05 ), which was prevented by pretreatment with NAC ( p < 0.05 ). Conclusions. PCB118 can activate NLRP3 inflammasome signaling in islet beta cells via the oxidative stress pathway and cause inflammation in islet beta cells. It suggests that environmental endocrine disruptors play an important role in the inflammation of islet beta cells and may contribute to the development of diabetes through NLRP3 inflammatory signaling.


2020 ◽  
Author(s):  
Ada Admin ◽  
Kung-Hsien Ho ◽  
Xiaodun Yang ◽  
Anna B. Osipovich ◽  
Over Cabrera ◽  
...  

The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau-knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau-knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning-over to restrict insulin over-secretion at basal conditions and preserve the insulin pool that can be released in following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.


2020 ◽  
Author(s):  
Ada Admin ◽  
Kung-Hsien Ho ◽  
Xiaodun Yang ◽  
Anna B. Osipovich ◽  
Over Cabrera ◽  
...  

The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau-knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau-knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning-over to restrict insulin over-secretion at basal conditions and preserve the insulin pool that can be released in following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.


Author(s):  
Lingling Wei ◽  
Yanzhuo Liu ◽  
Lijie Zhang ◽  
Tianhang Feng ◽  
Chunyou Lai ◽  
...  

2020 ◽  
Vol 295 (41) ◽  
pp. 14164-14177 ◽  
Author(s):  
Rohit B. Sharma ◽  
Christine Darko ◽  
Laura C. Alonso

Success or failure of pancreatic beta cell adaptation to ER stress is a determinant of diabetes susceptibility. The ATF6 and IRE1/XBP1 pathways are separate ER stress-response effectors important to beta cell health and function. ATF6α. and XBP1 direct overlapping transcriptional responses in some cell types. However, the signaling dynamics and interdependence of ATF6α and XBP1 in pancreatic beta cells have not been explored. To assess pathway-specific signal onset, we performed timed exposures of primary mouse islet cells to ER stressors and measured the early transcriptional response. Comparing the time course of induction of ATF6 and XBP1 targets suggested that the two pathways have similar response dynamics. The role of ATF6α in target induction was assessed by acute knockdown using islet cells from Atf6αflox/flox mice transduced with adenovirus expressing Cre recombinase. Surprisingly, given the mild impact of chronic deletion in mice, acute ATF6α knockdown markedly reduced ATF6-pathway target gene expression under both basal and stressed conditions. Intriguingly, although ATF6α knockdown did not alter Xbp1 splicing dynamics or intensity, it did reduce induction of XBP1 targets. Inhibition of Xbp1 splicing did not decrease induction of ATF6α targets. Taken together, these data suggest that the XBP1 and ATF6 pathways are simultaneously activated in islet cells in response to acute stress and that ATF6α is required for full activation of XBP1 targets, but XBP1 is not required for activation of ATF6α targets. These observations improve understanding of the ER stress transcriptional response in pancreatic islets.


2020 ◽  
Author(s):  
Ada Admin ◽  
Kung-Hsien Ho ◽  
Xiaodun Yang ◽  
Anna B. Osipovich ◽  
Over Cabrera ◽  
...  

The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau-knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau-knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning-over to restrict insulin over-secretion at basal conditions and preserve the insulin pool that can be released in following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.


Sign in / Sign up

Export Citation Format

Share Document