scholarly journals Glucose regulates microtubule disassembly and the dose of insulin secretion via tau phosphorylation

Author(s):  
Ada Admin ◽  
Kung-Hsien Ho ◽  
Xiaodun Yang ◽  
Anna B. Osipovich ◽  
Over Cabrera ◽  
...  

The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau-knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau-knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning-over to restrict insulin over-secretion at basal conditions and preserve the insulin pool that can be released in following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.

2020 ◽  
Author(s):  
Ada Admin ◽  
Kung-Hsien Ho ◽  
Xiaodun Yang ◽  
Anna B. Osipovich ◽  
Over Cabrera ◽  
...  

The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau-knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau-knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning-over to restrict insulin over-secretion at basal conditions and preserve the insulin pool that can be released in following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.


2020 ◽  
Author(s):  
Ada Admin ◽  
Kung-Hsien Ho ◽  
Xiaodun Yang ◽  
Anna B. Osipovich ◽  
Over Cabrera ◽  
...  

The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau-knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau-knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning-over to restrict insulin over-secretion at basal conditions and preserve the insulin pool that can be released in following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2495
Author(s):  
Yulin Zhang ◽  
Chengsheng Han ◽  
Wenzhen Zhu ◽  
Guoyi Yang ◽  
Xiaohong Peng ◽  
...  

Incretin-potentiated glucose-stimulated insulin secretion (GSIS) is critical to maintaining euglycemia, of which GLP-1 receptor (GLP-1R) on β-cells plays an indispensable role. Recently, α-cell-derived glucagon but not intestine-derived GLP-1 has been proposed as the critical hormone that potentiates GSIS via GLP-1R. However, the function of glucagon receptors (GCGR) on β-cells remains elusive. Here, using GCGR or GLP-1R antagonists, in combination with glucagon, to treat single β-cells, α-β cell clusters and isolated islets, we found that glucagon potentiates insulin secretion via β-cell GCGR at physiological but not high concentrations of glucose. Furthermore, we transfected primary mouse β-cells with RAB-ICUE (a genetically encoded cAMP fluorescence indicator) to monitor cAMP level after glucose stimulation and GCGR activation. Using specific inhibitors of different adenylyl cyclase (AC) family members, we revealed that high glucose concentration or GCGR activation independently evoked cAMP elevation via AC5 in β-cells, thus high glucose stimulation bypassed GCGR in promoting insulin secretion. Additionally, we generated β-cell-specific GCGR knockout mice which glucose intolerance was more severe when fed a high-fat diet (HFD). We further found that β-cell GCGR activation promoted GSIS more than GLP-1R in HFD, indicating the critical role of GCGR in maintaining glucose homeostasis during nutrient overload.


2021 ◽  
Vol 2 (3) ◽  
pp. 100728
Author(s):  
Yun-Xia Zhu ◽  
Yun-Cai Zhou ◽  
Yan Zhang ◽  
Peng Sun ◽  
Xiao-Ai Chang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jing Duan ◽  
Xian-Ling Qian ◽  
Jun Li ◽  
Xing-Hua Xiao ◽  
Xiang-Tong Lu ◽  
...  

Background. Diabetes is a progressive metabolic disease characterized by hyperglycemia. Functional impairment of islet β cells can occur to varying degrees. This impairment can initially be compensated for by proliferation and metabolic changes of β cells. Cell division control protein 42 (Cdc42) and the microRNA (miRNA) miR-29 have important roles in β-cell proliferation and glucose-stimulated insulin secretion (GSIS), which we further explored using the mouse insulinoma cell line MIN6. Methods. Upregulation and downregulation of miR-29a and Cdc42 were accomplished using transient transfection. miR-29a and Cdc42 expression was detected by real-time PCR and western blotting. MIN6 proliferation was detected using a cell counting kit assay. GSIS under high-glucose (20.0 mM) or basal-glucose (5.0 mM) stimulation was detected by enzyme-linked immunosorbent assay. The miR-29a binding site in the Cdc42 mRNA 3′-untranslated region (UTR) was determined using bioinformatics and luciferase reporter assays. Results. miR-29a overexpression inhibited proliferation (P<0.01) and GSIS under high-glucose stimulation (P<0.01). Cdc42 overexpression promoted proliferation (P<0.05) and GSIS under high-glucose stimulation (P<0.05). miR-29a overexpression decreased Cdc42 expression (P<0.01), whereas miR-29a downregulation increased Cdc42 expression (P<0.01). The results showed that the Cdc42 mRNA 3′-UTR is a direct target of miR-29a in vitro. Additionally, Cdc42 reversed miR-29a-mediated inhibition of proliferation and GSIS (P<0.01). Furthermore, miR-29a inhibited β-catenin expression (P<0.01), whereas Cdc42 promoted β-catenin expression (P<0.01). Conclusion. By negatively regulating Cdc42 and the downstream molecule β-catenin, miR-29a inhibits MIN6 proliferation and insulin secretion.


2006 ◽  
Vol 20 (1) ◽  
pp. 183-193 ◽  
Author(s):  
Beth A. Spurlin ◽  
Debbie C. Thurmond

Abstract Numerous overexpression studies have recently implicated Syntaxin 4 as an effector of insulin secretion, although its requirement in insulin granule exocytosis is unknown. To address this, islets from Syntaxin 4 heterozygous (−/+) knockout mice were isolated and compared with islets from wild-type mice. Under static incubation conditions, Syntaxin 4 (−/+) islets showed a 60% reduction in glucose-stimulated insulin secretion compared with wild-type islets. Perifusion analyses revealed that Syntaxin 4 (−/+) islets secreted 50% less insulin during the first phase of glucose-stimulated insulin secretion and that this defect could be fully restored by the specific replenishment of recombinant Syntaxin 4. This essential role for Syntaxin 4 in secretion from the islet was localized to the β-cells because small interfering RNA-mediated depletion of Syntaxin 4 in MIN6 β-cells abolished glucose-stimulated insulin secretion. Moreover, immunofluorescent confocal microscopy revealed that Syntaxin 4 was principally localized to the β-cells and not the α-cells of the mouse islet. Remarkably, islets isolated from transgenic mice that express 2.4-fold higher levels of Syntaxin 4 relative to wild-type mice secreted approximately 35% more insulin during both phases of insulin secretion, suggesting that increased Syntaxin 4 may be beneficial for enhancing biphasic insulin secretion in a regulated manner. Taken together, these data support the notion that Syntaxin 4-based SNARE complexes are essential for biphasic insulin granule fusion in pancreatic β-cells.


2011 ◽  
Vol 300 (2) ◽  
pp. E276-E286 ◽  
Author(s):  
Xuehui Geng ◽  
Haiyan Lou ◽  
Jian Wang ◽  
Lehong Li ◽  
Alexandra L. Swanson ◽  
...  

α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases.


2012 ◽  
Vol 23 (19) ◽  
pp. 3851-3862 ◽  
Author(s):  
Laurène Vetterli ◽  
Stefania Carobbio ◽  
Shirin Pournourmohammadi ◽  
Rafael Martin-del-Rio ◽  
Dorte M. Skytt ◽  
...  

In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell–specific GDH knockout mouse model, called βGlud1−/−. The absence of GDH in islets isolated from βGlud1–/– mice resulted in abrogation of insulin release evoked by glutamine combined with 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid or l-leucine. Reintroduction of GDH in βGlud1–/– islets fully restored the secretory response. Regarding glucose stimulation, insulin secretion in islets isolated from βGlud1–/– mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1–/– islets. On glucose stimulation, net synthesis of glutamate from α-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1–/– islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response to glucose was fully restored by the provision of cellular glutamate when βGlud1–/– islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role in this process.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chien Huang ◽  
Hao-Yi Wang ◽  
Mu-En Wang ◽  
Meng-Chieh Hsu ◽  
Yi-Hsieng Samuel Wu ◽  
...  

AbstractPrevious studies have demonstrated the important role of kisspeptin in impaired glucose-stimulated insulin secretion (GSIS). In addition, it was reported that the activation of autophagy in pancreatic β-cells decreases insulin secretion by selectively degrading insulin granules. However, it is currently unknown whether kisspeptin suppresses GSIS in β-cells by activating autophagy. To investigate the involvement of autophagy in kisspeptin–regulated insulin secretion, we overexpressed Kiss1 in NIT-1 cells to mimic the long-term exposure of pancreatic β-cells to kisspeptin during type 2 diabetes (T2D). Interestingly, our data showed that although kisspeptin potently decreases the intracellular proinsulin and insulin ((pro)insulin) content and insulin secretion of NIT-1 cells, autophagy inhibition using bafilomycin A1 and Atg5 siRNAs only rescues basal insulin secretion, not kisspeptin-impaired GSIS. We also generated a novel in vivo model to investigate the long-term exposure of kisspeptin by osmotic pump. The in vivo data demonstrated that kisspeptin lowers GSIS and (pro)insulin levels and also activated pancreatic autophagy in mice. Collectively, our data demonstrated that kisspeptin suppresses both GSIS and non-glucose-stimulated insulin secretion of pancreatic β-cells, but only non-glucose-stimulated insulin secretion depends on activated autophagic degradation of (pro)insulin. Our study provides novel insights for the development of impaired insulin secretion during T2D progression.


2016 ◽  
Vol 231 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Xiwen Xiong ◽  
Xupeng Sun ◽  
Qingzhi Wang ◽  
Xinlai Qian ◽  
Yang Zhang ◽  
...  

Chronic exposure of pancreatic β-cells to abnormally elevated levels of free fatty acids can lead to β-cell dysfunction and even apoptosis, contributing to type 2 diabetes pathogenesis. In pancreatic β-cells, sirtuin 6 (SIRT6) has been shown to regulate insulin secretion in response to glucose stimulation. However, the roles played by SIRT6 in β-cells in response to lipotoxicity remain poorly understood. Our data indicated that SIRT6 protein and mRNA levels were reduced in islets from diabetic and aged mice. High concentrations of palmitate (PA) also led to a decrease in SIRT6 expression in MIN6 β-cells and resulted in cell dysfunction and apoptosis. Knockdown of Sirt6 caused an increase in cell apoptosis and impairment in insulin secretion in response to glucose in MIN6 cells even in the absence of PA exposure. Furthermore, overexpression of SIRT6 alleviated the palmitate-induced lipotoxicity with improved cell viability and increased glucose-stimulated insulin secretion. In summary, our data suggest that SIRT6 can protect against palmitate-induced β-cell dysfunction and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document