Prenatal exercise and cardiovascular health (PEACH) study: impact of acute and chronic exercise on cerebrovascular hemodynamics and dynamic cerebral autoregulation

Author(s):  
Rachel J. Skow ◽  
Lawrence Labrecque ◽  
Jade A. Rosenberger ◽  
Patrice Brassard ◽  
Craig D. Steinback ◽  
...  

We performed a randomised controlled trial measuring dynamic cerebral autoregulation (dCA) using a sit-to-stand maneuver before (SS1) and following (SS2) an acute exercise test at 16-20 weeks gestation (trimester 2; TM2) and then again at 34-37 weeks gestation (third trimester; TM3). Following the first assessment, women were randomised into exercise training or control (standard care) groups; women in the exercise training group were prescribed moderate intensity aerobic exercise for 25-40 minutes on 3-4 days per week for 14±1weeks. Resting seated mean blood velocity in the middle cerebral artery (MCAvmean) was lower in TM3 compared to TM2 but not impacted by exercise training intervention. dCA was not impacted by gestational age, or exercise training during SS1. During SS2, dCA was altered such that there were greater absolute and relative decreases in mean arterial blood pressure (MAP) and MCAvmean, but this was not impacted by the intervention. There was also no difference in the relationship between the decrease in MCAvmean compared to the decrease in MAP (%/%), or the onset of the regulatory response with respect to acute exercise, gestational age, or intervention; however, rate of regulation was faster in women in the exercise group following acute exercise (interaction effect, p=0.048). These data highlight the resilience of the cerebral circulation in that dCA was well maintained or improved in healthy pregnant women between TM2 and TM3. However, future work addressing the impact of acute and chronic exercise on dCA in women who are at risk for cardiovascular complications during pregnancy is needed.

2013 ◽  
Vol 114 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Vincent L. Aengevaeren ◽  
Jurgen A. H. R. Claassen ◽  
Benjamin D. Levine ◽  
Rong Zhang

Cerebral blood flow (CBF) is stably maintained through the combined effects of blood pressure (BP) regulation and cerebral autoregulation. Previous studies suggest that aerobic exercise training improves cardiac baroreflex function and beneficially affects BP regulation, but may negatively affect cerebral autoregulation. The purpose of this study was to reveal the impact of lifelong exercise on cardiac baroreflex function and dynamic cerebral autoregulation (CA) in older adults. Eleven Masters athletes (MA) (8 men, 3 women; mean age 73 ± 6 yr; aerobic training >15 yr) and 12 healthy sedentary elderly (SE) (7 men, 5 women; mean age 71 ± 6 yr) participated in this study. BP, CBF velocity (CBFV), and heart rate were measured during resting conditions and repeated sit-stand maneuvers to enhance BP variability. Baroreflex gain was assessed using transfer function analysis of spontaneous changes in systolic BP and R-R interval in the low frequency range (0.05–0.15 Hz). Dynamic CA was assessed during sit-stand–induced changes in mean BP and CBFV at 0.05 Hz (10 s sit, 10 s stand). Cardiac baroreflex gain was more than doubled in MA compared with SE (MA, 7.69 ± 7.95; SE, 3.18 ± 1.29 ms/mmHg; P = 0.018). However, dynamic CA was similar in the two groups (normalized gain: MA, 1.50 ± 0.56; SE, 1.56 ± 0.42% CBFV/mmHg; P = 0.792). These findings suggest that lifelong exercise improves cardiac baroreflex function, but does not alter dynamic CA. Thus, beneficial effects of exercise training on BP regulation can be achieved in older adults without compromising dynamic regulation of CBF.


2016 ◽  
Vol 121 (2) ◽  
pp. 528-536 ◽  
Author(s):  
Graeme Carrick-Ranson ◽  
Naoki Fujimoto ◽  
Keri M. Shafer ◽  
Jeffrey L. Hastings ◽  
Shigeki Shibata ◽  
...  

Sedentary aging leads to left ventricular (LV) and vascular stiffening due in part to advanced glycation end-products (AGEs) cross-linking of extracellular matrix proteins. Vigorous lifelong exercise ameliorates age-related cardiovascular (CV) stiffening and enhances exercise LV function, although this effect is limited when exercise is initiated later in life. We hypothesized that exercise training might be more effective at improving the impact of age-related CV stiffening during exercise when combined with an AGE cross-link breaker (Alagebrium). Sixty-two seniors (≥60 yr) were randomized into four groups: sedentary + placebo, sedentary + Alagebrium, exercise + placebo, and exercise + Alagebrium for 1 yr. Moderate-intensity aerobic exercise was performed 3-4 sessions/wk; controls underwent similar frequency of yoga/balance training. Twenty-four similarly-aged, lifelong exercisers (4–5 sessions/wk) served as a comparator for the effect of lifelong exercise on exercising LV function. Oxygen uptake (Douglas bags), stroke index (SI; acetylene rebreathing), and effective arterial elastance (Ea) were collected at rest and submaximal and maximal exercise. Maximum O2 uptake (23 ± 5 to 25 ± 6 ml·kg−1·min−1) increased, while SI (35 ± 11 to 39 ± 12 ml/m2) and Ea (4.0 ± 1.1 to 3.7 ± 1.2 mmHg·ml−1·m−2) were improved across all conditions with exercise, but remained unchanged in controls (exercise × time, P ≤ 0.018). SI or Ea were not affected by Alagebrium (medication × time, P ≥ 0.468) or its combination with exercise (interaction P ≥ 0.252). After 1 yr of exercise plus Alagebrium, exercise SI and Ea remained substantially below that of lifelong exercisers (15–24 and 9–22%, respectively, P ≤ 0.415). In conclusion, Alagebrium plus exercise had no synergistic effect on exercise LV function and failed to achieve levels associated with lifelong exercise, despite a similar exercise frequency.


2007 ◽  
Vol 293 (3) ◽  
pp. R1335-R1341 ◽  
Author(s):  
Krista R. Howarth ◽  
Kirsten A. Burgomaster ◽  
Stuart M. Phillips ◽  
Martin J. Gibala

The branched-chain oxoacid dehydrogenase complex (BCOAD) is rate determining for the oxidation of branched-chain amino acids (BCAAs) in skeletal muscle. Exercise training blunts the acute exercise-induced activation of BCOAD (BCOADa) in human skeletal muscle (McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Am J Physiol Endocrinol Metab 278: E580–E587, 2000); however, the mechanism is unknown. We hypothesized that training would increase the muscle protein content of BCOAD kinase, the enzyme responsible for inactivation of BCOAD by phosphorylation. Twenty subjects [23 ± 1 yr; peak oxygen uptake (V̇o2peak) = 41 ± 2 ml·kg−1·min−1] performed 6 wk of either high-intensity interval or continuous moderate-intensity training on a cycle ergometer ( n = 10/group). Before and after training, subjects performed 60 min of cycling at 65% of pretraining V̇o2peak, and needle biopsy samples (vastus lateralis) were obtained before and immediately after exercise. The effect of training was demonstrated by an increased V̇o2peak, increased citrate synthase maximal activity, and reduced muscle glycogenolysis during exercise, with no difference between groups (main effects, P < 0.05). BCOADa was lower after training (main effect, P < 0.05), and this was associated with a ∼30% increase in BCOAD kinase protein content (main effect, P < 0.05). We conclude that the increased protein content of BCOAD kinase may be involved in the mechanism for reduced BCOADa after exercise training in human skeletal muscle. These data also highlight differences in models used to study the regulation of skeletal muscle BCAA metabolism, since exercise training was previously reported to increase BCOADa during exercise and decrease BCOAD kinase content in rats (Fujii H, Shimomura Y, Murakami T, Nakai N, Sato T, Suzuki M, Harris RA. Biochem Mol Biol Int 44: 1211–1216, 1998).


2020 ◽  
Vol 8 (5) ◽  
Author(s):  
Joel S. Burma ◽  
Paige Copeland ◽  
Alannah Macaulay ◽  
Omeet Khatra ◽  
Alexander D. Wright ◽  
...  

2020 ◽  
Vol 128 (2) ◽  
pp. 397-409
Author(s):  
Vasilis Z. Marmarelis ◽  
Dae C. Shin ◽  
Mareike Oesterreich ◽  
Martin Mueller

The study of dynamic cerebral autoregulation (DCA) in essential hypertension has received considerable attention because of its clinical importance. Several studies have examined the dynamic relationship between spontaneous beat-to-beat arterial blood pressure data and contemporaneous cerebral blood flow velocity measurements (obtained via transcranial Doppler at the middle cerebral arteries) in the form of a linear input-output model using transfer function analysis. This analysis is more reliable when the contemporaneous effects of changes in blood CO2 tension are also taken into account, because of the significant effects of CO2 dynamic vasomotor reactivity (DVR) upon cerebral flow. In this article, we extract such input-output predictive models from spontaneous time series hemodynamic data of 24 patients with essential hypertension and 20 normotensive control subjects under resting conditions, using the novel methodology of principal dynamic modes (PDMs) that achieves improved estimation accuracy over previous methods for relatively short and noisy data. The obtained data-based models are subsequently used to compute indexes and markers that quantify DCA and DVR in each subject or patient and therefore can be used to assess the effects of essential hypertension. These model-based DCA and DVR indexes were properly defined to capture the observed effects of DCA and VR and found to be significantly different ( P < 0.05) in the hypertensive patients. We also found significant differences between patients and control subjects in the relative contribution of three PDMs to the model output prediction, a finding that offers the prospect of identifying the physiological mechanisms affected by essential hypertension when the PDMs are interpreted in terms of specific physiological mechanisms. NEW & NOTEWORTHY This article presents novel model-based methodology for obtaining diagnostic indexes of dynamic cerebral autoregulation and dynamic vasomotor reactivity in hypertension.


2009 ◽  
Vol 101 (03) ◽  
pp. 452-459 ◽  
Author(s):  
Roxanne Pelletier ◽  
Kim L. Lavoie ◽  
Simon L. Bacon

SummaryThere is now a large and impressive literature showing that people who engage in chronic aerobic exercise or who have better cardiovascular fitness levels, tend to live longer and have lower levels of cardiovascular disease (CVD). However, there is a paradox, as acute aerobic exercise has been associated with an increased risk of CVD events. There are now a number of review articles suggesting that the differential benefits of chronic, relative to acute, exercise might be due to thrombotic changes, though the majority of this data is derived from healthy individuals. However, acute exercise is of greater concern and chronic exercise of greater benefit to patient populations. In addition, these higher risk groups tend to present with more complex profiles, e.g. they may be taking medications that influence thrombotic pathways. As such, the current review has focused on newer information relating to exercise, physical activity and thrombosis in patient populations, and highlights some of the growing area’s in the field. For example, the impact of warm-up exercise, the interaction of medications, and issues surrounding the optimal volume and intensity of exercise.


Sign in / Sign up

Export Citation Format

Share Document