deformation anisotropy
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 546 ◽  
pp. 149091
Author(s):  
Jiaming Lin ◽  
Feng Jiang ◽  
Qiuling Wen ◽  
Yueqin Wu ◽  
Jing Lu ◽  
...  

2021 ◽  
Vol 198 ◽  
pp. 109228
Author(s):  
Nadia Kouraytem ◽  
John Varga ◽  
Behnam Amin-Ahmadi ◽  
Hadi Mirmohammad ◽  
Raphaël A. Chanut ◽  
...  

2021 ◽  
Vol 274 ◽  
pp. 03026
Author(s):  
Aleksandr Treshchev ◽  
Mariya Lapshina ◽  
Yulia Zavyalova

A variant of the rotation shell in the particular form of a closed circular cylindrical shell, which is often used in the design practice of civil, power and other industrial structures, is considered. The specificity of the considered shell lies in the features of its material, which has a manifestation of dual anisotropy. In particular, this material is orthotropic in structure, and the nature of deformation shows the dependence of stiffness and strength on the type of stress state. The loading of the shell is assumed to be axisymmetric, taking into account the influence of a medium with variable thermal parameters. The temperature difference between the shell surfaces is taken into account here. The statement of the general thermomechanical problem is carried out in an unrelated form, taking into account a certain independence of the problems of thermodynamics and mechanics. Taking into account the limitations of the classical thermomechanical theories of shells made of materials with dual anisotropy and the fact that the known models for such materials have significant drawbacks, the authors used a variant of the normalized stress space. Differential equations of thermoelasticity for a cylindrical shell are obtained, taking into account the complicated thermomechanical properties of its material. Particular solutions with the features of the results of calculating the shell states are illustrated, and their analysis is carried out.


2020 ◽  
Vol 5 ◽  
pp. 60-68
Author(s):  
Jamaladdin Nuraddin Aslanov ◽  
Sevinc Malik Abasova ◽  
Zenfira Seydi Huseynli

Rubber seals for closing devices operating in cold climates degrade quickly in aggressive environments at very low temperatures. As a result, leaks and failures occur in the closure devices. Therefore, there is a great need to develop a new model of rubber seals and develop their scientific basis. The article is devoted to increasing the sealing effect of rubber seals of machines and equipment, including closures, by introducing the anisotropy of the rubber matrix into its structure with control of the characteristics of hard closures obtained from rubber. For this purpose, new models of the gate valve design were obtained and new models of two-layer panel seals based on a modified rubber elastomer matrix are applied to these structures. For this, a test program is carried out in the form of an analytical trajectory of large, medium and small constant curves in two closed forms based on characteristic deformations to study the anisotropy of matrix deformations. It is found that the eigenvector of the deformation anisotropy of the matrix is not in the load trajectory before it collapses, it arises with a delay. This delay slows down the rate of destruction. This property of deceleration of the main eigenvector of the deformation anisotropy of the matrix is subjected to a very complex loading of the initial fields, in the latter sections it is also observed in samples No. 2, No. 3, tested along the trajectory of linear loading. This delay slows down the destruction rate. Thus, the direction of the deceleration property of the main eigenvector can be considered quite common. This leads to an increase in its resistance to wear in a highly aggressive environment


2020 ◽  
Vol 86 (1) ◽  
pp. 44-50
Author(s):  
Nikolai A. Makhutov ◽  
Ivan V. Makarenko ◽  
Leonid V. Makarenko

Survivability, service life and operational safety of the engineering structures are determined by their damage rate which is mainly regulated by the presence and development of the crack-like defects in the material. Kinetic dependences describing the development of multidirectional semi-elliptic surface cracks with allowance for the anisotropy of the material properties are proposed proceeding from experimental data and numerical solutions. The obtained results are required in studying kinematic problems in nonlinear mechanics of a continuous anisotropic medium. Refining parametric equations for elastoplastic deformation anisotropy are proposed. Functional dependences of the parameters of the kinetic diagrams of low-cycle fracture on the mechanical properties of the material are presented for a wide class of welded joints of austenite stainless cyclically stable steels (12Kh18N10T). The processes of developing inclined semi-elliptic surface cracks in the continuums of welded joints under non-linear boundary loading conditions are studied. We have carried out combined computational, experimental and numerical studies of the stress-strain state in the vicinity of the contour of stationary and growing surface semi-elliptic cracks randomly oriented in space under elastoplastic nominal cyclic loading taking into account the anisotropy of the material properties. The functional distribution of the inhomogeneity parameter of the mechanical properties of the material, which affects accumulation of the local plastic strains and direction of developing the elastoplastic fracture is obtained and presented in the form of the kinetic equation of nonlinear fracture mechanics. Comparison of the experimental results and numerical calculations of the stress-strain state along the contour of the cracks under study in nonlinear boundary loading conditions revealed a good agreement between the intensities of relative elastoplastic deformations at their surface points with allowance for the deformation anisotropy. Calculations of the elastoplastic fracture resistance of the critical elements of the equipment with allowance for considered factors of nonlinear fracture mechanics and heterogeneity of the properties can improve the accuracy of evaluation of their strength, service life and survivability.


Sign in / Sign up

Export Citation Format

Share Document