scholarly journals Intermetallic formation of Al-Fe and Al-Ni phases by ultrafast slurry aluminization (flash aluminizing)

2020 ◽  
Vol 397 ◽  
pp. 126011
Author(s):  
Thomas Kepa ◽  
Fernando Pedraza ◽  
Fabien Rouillard
Author(s):  
R. M. Anderson ◽  
T. M. Reith ◽  
M. J. Sullivan ◽  
E. K. Brandis

Thin films of aluminum or aluminum-silicon can be used in conjunction with thin films of chromium in integrated electronic circuits. For some applications, these films exhibit undesirable reactions; in particular, intermetallic formation below 500 C must be inhibited or prevented. The Al films, being the principal current carriers in interconnective metal applications, are usually much thicker than the Cr; so one might expect Al-rich intermetallics to form when the processing temperature goes out of control. Unfortunately, the JCPDS and the literature do not contain enough data on the Al-rich phases CrAl7 and Cr2Al11, and the determination of these data was a secondary aim of this work.To define a matrix of Cr-Al diffusion couples, Cr-Al films were deposited with two sets of variables: Al or Al-Si, and broken vacuum or single pumpdown. All films were deposited on 2-1/4-inch thermally oxidized Si substrates. A 500-Å layer of Cr was deposited at 120 Å/min on substrates at room temperature, in a vacuum system that had been pumped to 2 x 10-6 Torr. Then, with or without vacuum break, a 1000-Å layer of Al or Al-Si was deposited at 35 Å/s, with the substrates still at room temperature.


Author(s):  
Lucas Copeland ◽  
Mukul Saran

Abstract This paper presents a mechanical cross-sectioning approach that produces an image clarity not yet demonstrated in published literature. It demonstrates how a critical sequence of polishing, basic slurry optimization and staining, in conjunction with correct imaging parameters can be used to highlight the growth morphology of the intermetallic compound (IMCs). Utilizing this approach, the paper describes the results of a SEM imaging study of the intermetallic formation and growth at the Cu-Al bond interface during thermal ageing for up to 4000hrs at 150 deg C. The paper uses direct SEM imaging to catalog observations which are used to create an initial model for IMC and void growth at the wire bonded interface. It examines the effect of aluminum splash and concludes that growth of intermetallics at the Cu-Al interface is rapid into the bond-pad aluminum than into the Cu-ball, but the growth thickness uniformity is much higher into the Cu-ball.


2003 ◽  
Vol 10 (04) ◽  
pp. 677-683 ◽  
Author(s):  
E. B. Hannech ◽  
N. Lamoudi ◽  
N. Benslim ◽  
B. Makhloufi

Intermetallic formation at 425°C in the aluminum–copper system has been studied by scanning electron microscopy using welded diffusion couples. Several Al–Cu phases predicted by the equilibrium phase diagram of the elements and voids taking place in the diffusion zone have been detected in the couples. The predominant phases were found to be Al 2 Cu 3 and the solid solution of Al in Cu, α. The growth of the intermetallic layer obeyed the parabolic law.


2017 ◽  
Vol 28 (2) ◽  
pp. 340-345 ◽  
Author(s):  
H. Naghiha ◽  
B. Movahedi ◽  
M. Asadi Asadabad ◽  
M. Toghyani Mournani

2008 ◽  
Vol 31 (4) ◽  
pp. 767-775 ◽  
Author(s):  
Mark Huang ◽  
Ong Gee Yeow ◽  
Chia Yong Poo ◽  
Tom Jiang

2018 ◽  
Vol 731 ◽  
pp. 1159-1170 ◽  
Author(s):  
P. Pandee ◽  
C.M. Gourlay ◽  
S.A. Belyakov ◽  
U. Patakham ◽  
G. Zeng ◽  
...  

Author(s):  
Bo Chi ◽  
Zhiming Shi ◽  
Cunquan Wang ◽  
Liming Wang ◽  
Hao Lian ◽  
...  

Abstract Near-eutectic Al-Si alloys have low strength and high brittleness because of the presence of many eutectic b-Si flakes, needle-like Al-Fe-Si intermetallics, and coarse α-Al grains. This study disclosed the effects of cerium-rich RE (rare earth) element modification on orientation characters of crystals, formation of Al-Ce compounds, and microstructural refinement to improve the microstructure and mechanical properties of the alloys. The RE addition depressed preferential growth along the close-packed and/or sub-closepacked planes and promoted growth along the non-closepacked planes, in which La and other elements were dissolved into needle-like Al11Ce3 phase. When the temperature decreased, Al11Ce3 was preferentially crystallized from the melts and then devitrified by attaching to the surface of β-Al5FeSi needles. Moreover, many small Al11Ce3 particles were precipitated in the matrix and on the Si surface by a T6 heat treatment. Eutectic β-Si phases were constructed into discontinuous networks, short rods, and even particles by RE additions, which were further transformed into fine nodules following the T6 treatment. α-Al grains and primary β-Al5FeSi needles were simultaneously refined. The addition of 1.0 wt.% REs and subsequent T6 treatment yielded the highest tensile strength, elongation, and hardness of the alloy.


2015 ◽  
Vol 1087 ◽  
pp. 162-166
Author(s):  
Nor Aishah Jasli ◽  
Hamidi Abd Hamid ◽  
Ramani Mayappan

This study investigated the effect of Ni addition on intermetallic formation in the Sn-8Zn-3Bi solder under liquid state aging. The intermetallic compounds were formed by reacting the solder alloy with copper substrate. Different reflow time was used at temperature 220°C. Morphology of the phases formed was observed using scanning electron microscope (SEM) and in order to determine elemental compositions of the phases, energy dispersive x-ray (EDX) was used. The formation of the reaction layer led by Cu5Zn8 intermetallic and then followed by Cu6Sn5 and Cu3Sn when reflow time increases. Keywords: lead free solder, intermetallic, Cu5Zn8, Cu6Sn5, liquid state aging.


Sign in / Sign up

Export Citation Format

Share Document