challenger deep
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 35)

H-INDEX

17
(FIVE YEARS 3)

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1305
Author(s):  
Fumiyoshi Abe

High hydrostatic pressure is common mechanical stress in nature and is also experienced by the human body. Organisms in the Challenger Deep of the Mariana Trench are habitually exposed to pressures up to 110 MPa. Human joints are intermittently exposed to hydrostatic pressures of 3–10 MPa. Pressures less than 50 MPa do not deform or kill the cells. However, high pressure can have various effects on the cell’s biological processes. Although Saccharomyces cerevisiae is not a deep-sea piezophile, it can be used to elucidate the molecular mechanism underlying the cell’s responses to high pressures by applying basic knowledge of the effects of pressure on industrial processes involving microorganisms. We have explored the genes associated with the growth of S. cerevisiae under high pressure by employing functional genomic strategies and transcriptomics analysis and indicated a strong association between high-pressure signaling and the cell’s response to nutrient availability. This review summarizes the occurrence and significance of high-pressure effects on complex metabolic and genetic networks in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Mechanosensation in humans has also been discussed.


2021 ◽  
Vol 150 (4) ◽  
pp. A328-A329
Author(s):  
Scott Loranger ◽  
David R. Barclay

2021 ◽  
Vol 150 (4) ◽  
pp. A157-A157
Author(s):  
Ying-Tsong Lin ◽  
Victor Vescovo ◽  
Timothy Macdonald ◽  
Kate von Krusenstiern ◽  
Robert P. Dziak ◽  
...  

Author(s):  
Samuel F. Greenaway ◽  
Kathryn D. Sullivan ◽  
S. Harper Umfress ◽  
Alice B. Beittel ◽  
Karl D. Wagner

2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Wei-Jia Zhang ◽  
Chan Zhang ◽  
Siyu Zhou ◽  
Xue-Gong Li ◽  
Sophie Mangenot ◽  
...  

Hadal trenches are the deepest but underexplored ecosystems on the Earth. Inhabiting the trench bottom is a group of micro-organisms termed obligate piezophiles that grow exclusively under high hydrostatic pressures (HHP). To reveal the genetic and physiological characteristics of their peculiar lifestyles and microbial adaptation to extreme high pressures, we sequenced the complete genome of the obligately piezophilic bacterium Moritella yayanosii DB21MT-5 isolated from the deepest oceanic sediment at the Challenger Deep, Mariana Trench. Through comparative analysis against pressure sensitive and deep-sea piezophilic Moritella strains, we identified over a hundred genes that present exclusively in hadal strain DB21MT-5. The hadal strain encodes fewer signal transduction proteins and secreted polysaccharases, but has more abundant metal ion transporters and the potential to utilize plant-derived saccharides. Instead of producing osmolyte betaine from choline as other Moritella strains, strain DB21MT-5 ferments on choline within a dedicated bacterial microcompartment organelle. Furthermore, the defence systems possessed by DB21MT-5 are distinct from other Moritella strains but resemble those in obligate piezophiles obtained from the same geographical setting. Collectively, the intensive comparative genomic analysis of an obligately piezophilic strain Moritella yayanosii DB21MT-5 demonstrates a depth-dependent distribution of energy metabolic pathways, compartmentalization of important metabolism and use of distinct defence systems, which likely contribute to microbial adaptation to the bottom of hadal trench.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ping Chen ◽  
Hui Zhou ◽  
Yanyan Huang ◽  
Zhe Xie ◽  
Mengjie Zhang ◽  
...  

Abstract Background The full biosphere structure and functional exploration of the microbial communities of the Challenger Deep of the Mariana Trench, the deepest known hadal zone on Earth, lag far behind that of other marine realms. Results We adopt a deep metagenomics approach to investigate the microbiome in the sediment of Challenger Deep, Mariana Trench. We construct 178 metagenome-assembled genomes (MAGs) representing 26 phyla, 16 of which are reported from hadal sediment for the first time. Based on the MAGs, we find the microbial community functions are marked by enrichment and prevalence of mixotrophy and facultative anaerobic metabolism. The microeukaryotic community is found to be dominated by six fungal groups that are characterized for the first time in hadal sediment to possess the assimilatory and dissimilatory nitrate/sulfate reduction, and hydrogen sulfide oxidation pathways. By metaviromic analysis, we reveal novel hadal Caudovirales clades, distinctive virus-host interactions, and specialized auxiliary metabolic genes for modulating hosts’ nitrogen/sulfur metabolism. The hadal microbiome is further investigated by large-scale cultivation that cataloged 1070 bacterial and 19 fungal isolates from the Challenger Deep sediment, many of which are found to be new species specialized in the hadal habitat. Conclusion Our hadal MAGs and isolates increase the diversity of the Challenger Deep sediment microbial genomes and isolates present in the public. The deep metagenomics approach fills the knowledge gaps in structure and diversity of the hadal microbiome, and provides novel insight into the ecology and metabolism of eukaryotic and viral components in the deepest biosphere on earth.


Author(s):  
Huichang Jiang ◽  
Hongzhou Xu ◽  
Philip A. Vetter ◽  
Qiang Xie ◽  
Jiancheng Yu ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xu Dai ◽  
Tao Xu ◽  
Jian Chen

The deep oceanic sediments were collected from the Challenger Deep in the southwestern part of the Mariana Trench. Considering the salt in the pore water, a modified method for determining the physical and mechanical properties of the deep-sea sediments was proposed, by which the geological engineering indices were measured and corrected. Through the scanning electronic microscope (SEM), the microstructures of the sediments were found to be composed of flocculation, with a large number of diatom debris and empty shells of organism around it. As a consequence, the porosity and compressibility are high; internal friction angle and cohesion are low. Besides high water content, high porosity, high liquid limit, high plasticity, high consolidation coefficient, low compressive modulus, low shear strength, low density, and low specific gravity, the deep-sea mining machine may slip and subside. This research can improve the understanding of the deep-sea sedimentary environment of the Challenger Deep in the southwestern part of the Mariana Trench and provide an essential reference for the parameter calibration as well as the basis for walking-characteristic study and optimization design of the deep-sea mining vehicle.


2021 ◽  
Author(s):  
Ping Chen ◽  
Hui Zhou ◽  
Yanyan Huang ◽  
Zhe Xie ◽  
Mengjie Zhang ◽  
...  

Background: The full biosphere structure and functional exploration of the microbial communities of the Challenger Deep of the Mariana Trench, the deepest known hadal zone on Earth, lag far behind that of other marine realms. Results: We adopt a deep metagenomics approach to investigate the microbiome in the sediment of Challenger Deep, Mariana Trench. We construct 178 metagenome-assembled genomes (MAGs) representing 26 phyla, 16 of which are reported from hadal sediment for the first time. Based on the MAGs, we find the microbial community functions are marked by enrichment and prevalence of mixotrophy and facultative anaerobic metabolism. The microeukaryotic community is found to be dominated by six fungal groups that are characterized for the first time in hadal sediment to possess the assimilatory and dissimilatory nitrate and sulfate reduction, and hydrogen sulfide oxidation pathways. By metaviromic analysis, we reveal novel hadal Caudovirales clades, distinctive virus-host interactions, and specialized auxiliary metabolic genes for modulating hosts' nitrogen/sulfur metabolism. The hadal microbiome is further investigated by large-scale cultivation that cataloged 1070 bacterial and 19 fungal isolates from the Challenger Deep sediment, many of which are found to be new species specialized in the hadal habitat. Conclusion: Our hadal MAGs and isolates increase the diversity of the Challenger Deep sediment microbial genomes and isolates present in the public. The deep metagenomics approach fills the knowledge gaps in structure and diversity of the hadal microbiome, and provides novel insight into the ecology and metabolism of eukaryotic and viral components in the deepest biosphere on earth.


Sign in / Sign up

Export Citation Format

Share Document