Detection of arc characteristics and weld forming quality of Aluminum Alloy DP-MIG welding using AE signal through resonance demodulation

Measurement ◽  
2021 ◽  
pp. 110427
Author(s):  
Kuanfang He ◽  
Zixiong Xia ◽  
Yin Si ◽  
Jiahe Liang ◽  
Jiangfeng Yong ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3206
Author(s):  
Xuehui Chen ◽  
Xin Xu ◽  
Wei Liu ◽  
Lei Huang ◽  
Hao Li ◽  
...  

This paper studies the compound effect of liquid medium and laser on the workpiece and analyses the law of material surface temperature change during the processing. Taking 7075-T6 aluminum alloy as the research object, the surface temperature field of aluminum alloy processed using water-jet-assisted laser machining under different process parameters was simulated using finite element software. In addition, the temperature field of the material surface was detected in real-time using the self-built water-jet-assisted laser machining temperature field detection system, and the processing results were observed and verified using an optical microscope, scanning electron microscope, and energy spectrum analyzer. The results show that when the water jet inflow angle is 45°, the heat-affected area of the material surface is the smallest, and the cooling effect of the temperature field of the material surface is better. Considering the liquidus melting point of 7075 aluminum alloys, it is concluded that the processing effect is better when the water jet velocity is 14 m·s−1, the laser power is 100 W, and the laser scanning speed is 1.2 mm·s−1. At this time, the quality of the tank is relatively good, there are no cracks in the bottom of the tank, and there is less slag accumulation. Compared with anhydrous laser etching, water-jet-assisted laser etching can reduce the problems of micro-cracks, molten slag, and the formation of a recast layer in laser etching and improve the quality of the workpiece, and the composition of the bottom slag does not change. This study provides theoretical guidance and application support for the selection and optimization of process parameters for water-jet-assisted laser etching of aluminum alloy and further enriches the heat transfer mechanism of multi-field coupling in the process of water-jet-assisted laser machining.


2020 ◽  
Vol 50 ◽  
pp. 159-167
Author(s):  
Wenlin Chen ◽  
Chen Xu ◽  
Penglin Pan ◽  
Xiangming Ruan ◽  
Hongxuan Ji

2013 ◽  
Vol 483 ◽  
pp. 280-284
Author(s):  
Xi Jian Zheng ◽  
Xin Zhuo Wang ◽  
Jin Meng Zhang ◽  
Yu Fei Zhu

The vertical steel bar bending forming is a kind of new process of bending method. The bending speed, bending radius and clamping length H which is the parameters of vertical steel bar bending machine , is directly affect the quality of bending forming parts. This paper calculated the length of reinforcement before being incised and the springback angle of bending steel bar which obtained the reasonable cutting length and bending Angle; Then based on rigid-flexible virtual prototype technology to build the dynamics model of vertical steel bar bending system. Through simulation analysis ,it obtained the relationship between bending speed, bending radius , clamping length H and forming quality of bending steel bar. In this paper, the analysis method have reference value to the design of similar steel bar bending machines.


2021 ◽  
Vol 410 ◽  
pp. 203-208
Author(s):  
I.S. Loginova ◽  
N.A. Popov ◽  
A.N. Solonin

In this work we studied the microstructure and microhardness of standard AA2024 alloy and AA2024 alloy with the addition of 1.5% Y after pulsed laser melting (PLM) and selective laser melting (SLM). The SLM process was carried out with a 300 W power and 0.1 m/s laser scanning speed. A dispersed microstructure without the formation of crystallization cracks and low liquation of alloying elements was obtained in Y-modified AA2024 aluminum alloy. Eutectic Al3Y and Al8Cu4Y phases were detected in Y-modified AA2024 aluminum alloy. It is led to a decrease in the formation of crystallization cracks The uniform distribution of alloying elements in the yttrium-modified alloy had a positive effect on the quality of the laser melting zone (LMZ) and microhardness.


2021 ◽  
Vol 72 ◽  
pp. 215-226
Author(s):  
Cheng Cheng ◽  
Hao Chen ◽  
Jiaxin Guo ◽  
Xunzhong Guo ◽  
Yuanji Shi

2017 ◽  
Vol 748 ◽  
pp. 69-73 ◽  
Author(s):  
Anupama Hiremath ◽  
Joel Hemanth

The paper investigates the novelty of application of end chills in fabricating Aluminum alloy metal matrix composites. An effort has also been made to evaluate the effect of chill material on the soundness of the castings obtained. The required composites were prepared using LM-25 Aluminum alloy as matrix material in which different weight percent of Borosilicate glass particles were added ranging from 3 wt.% to 12 wt.%. The variation in weight percent was brought about in steps of 3%. The fabrication of the composites was carried out in sand molds by incorporating two metallic (copper and Steel) and two non-metallic (Graphite and Silicon carbide) end chills. The specimens for strength and hardness tests were prepared as per ASTM standards and the specimens were drawn from near chill-end as well as from farther away from chill end. The microstructure of the specimens reveal a refined grain structure proving the sound quality of the castings. The result analysis also leads to the conclusion that metallic chills are more beneficial as compared to non-metallic chills for obtaining a good quality composites. Copper chill with a high volumetric heat capacity proved to be the best chill material amongst the others.


Mechanik ◽  
2018 ◽  
Vol 91 (7) ◽  
pp. 476-478
Author(s):  
Elżbieta Doluk ◽  
Józef Kuczmaszewski ◽  
Paweł Pieśko

Presented are results of the surface quality sandwich composites (aluminum alloy EN AW-2024 and CFRP) by using an abrasive water-jet. The experiments were conducted with different speed of cutting, pressure of the abrasive water, mass flow rates, entry side of the stream and quantity of composite layers. The analysis has been studied based on received bevel angle values.


Sign in / Sign up

Export Citation Format

Share Document