Rec8 cohesin-mediated loop-axis chromatin architecture is required for meiotic recombination

2021 ◽  
Author(s):  
Takeshi Sakuno ◽  
Sanki Tashiro ◽  
Hideki Tanizawa ◽  
Osamu Iwasaki ◽  
Da-Qiao Ding ◽  
...  

During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of the cohesin-dependent axial structure in fission yeast, which forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the central elements. The results demonstrated that Rec8 cohesin is crucial for the formation of the loop-axis structure within the atypical SC. Furthermore, the Rec8-mediated loop-axis structure is formed in the absence of LinEs and provides a structural platform for aligning homologous chromosomes. We also identified a rec8 mutant that lost the ability to assemble the loop-axis structure without losing cohesion. Remarkably, this mutant showed defects in the LinE assembly, resulting in a significant reduction in meiotic recombination. Collectively, our results demonstrate an essential role for the Rec8-dependent loop-axis structure in LinE assembly, facilitating meiotic recombination.

1999 ◽  
Vol 145 (6) ◽  
pp. 1233-1250 ◽  
Author(s):  
Ayumu Yamamoto ◽  
Robert R. West ◽  
J. Richard McIntosh ◽  
Yasushi Hiraoka

Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination.


2017 ◽  
Author(s):  
Divya Pattabiraman ◽  
Baptiste Roelens ◽  
Alexander Woglar ◽  
Anne M. Villeneuve

AbstractDuring meiotic prophase, a structure called the synaptonemal complex (SC) assembles at the interface between aligned pairs of homologous chromosomes, and crossover recombination events occur between their DNA molecules. Here we investigate the inter-relationships between these two hallmark features of the meiotic program in the nematode C. elegans, revealing dynamic properties of the SC that are modulated by recombination. We demonstrate that the SC incorporates new subunits and switches from a more highly dynamic/labile state to a more stable state as germ cells progress through the pachytene stage of meiotic prophase. We further show that the more dynamic state of the SC is prolonged in mutants where meiotic recombination is impaired. Moreover, in meiotic mutants where recombination intermediates are present in limiting numbers, SC central region subunits become preferentially stabilized on the subset of chromosome pairs that harbor a site where pro-crossover factors COSA-1 and MutSγ are concentrated. Polo-like kinase PLK-2 becomes preferentially localized to the SCs of chromosome pairs harboring recombination sites prior to the enrichment of SC central region proteins on such chromosomes, and PLK-2 is required for this enrichment to occur. Further, late pachytene nuclei in a plk-2 mutant exhibit the more highly dynamic SC state. Together our data demonstrate that crossover recombination events elicit chromosome-autonomous stabilizing effects on the SC and implicate PLK-2 in this process. We discuss how this recombination-triggered modulation of SC state might contribute to regulatory mechanisms that operate during meiosis to ensure the formation of crossovers while at the same time limiting their numbers.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 539-544 ◽  
Author(s):  
Hasanuzzaman Bhuiyan ◽  
Gunilla Dahlfors ◽  
Karin Schmekel

Abstract The synaptonemal complex (SC) keeps the synapsed homologous chromosomes together during pachytene in meiotic prophase I. Structures that resemble stacks of SCs, polycomplexes, are sometimes found before or after pachytene. We have investigated ndt80 mutants of yeast, which arrest in pachytene. SCs appear normal in spread chromosome preparations, but are only occasionally found in intact nuclei examined in the electron microscope. Instead, large polycomplexes occur in almost every ndt80 mutant nucleus. Immunoelectron microscopy using DNA antibodies show strong preferential labeling to the lateral element parts of the polycomplexes. In situ hybridization using chromosome-specific probes confirms that the chromosomes in ndt80 mutants are paired and attached to the SCs. Our results suggest that polycomplexes can be involved in binding of chromosomes and possibly also in synapsis.


2013 ◽  
Vol 24 (7) ◽  
pp. 1053-1067 ◽  
Author(s):  
Amy M. Clemons ◽  
Heather M. Brockway ◽  
Yizhi Yin ◽  
Bhavatharini Kasinathan ◽  
Yaron S. Butterfield ◽  
...  

During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.


2021 ◽  
Author(s):  
Liangyu Zhang ◽  
Weston Stauffer ◽  
David Zwicker ◽  
Abby F. Dernburg

AbstractMeiotic recombination is highly regulated to ensure precise segregation of homologous chromosomes. Evidence from diverse organisms indicates that the synaptonemal complex (SC), which assembles between paired chromosomes, plays essential roles in crossover formation and patterning. Several additional “pro-crossover” proteins are also required for recombination intermediates to become crossovers. These typically form multiple foci or recombination nodules along SCs, and later accumulate at fewer, widely spaced sites. Here we report that in C. elegans CDK-2 is required to stabilize all crossover intermediates and stabilizes interactions among pro-crossover factors by phosphorylating MSH-5. Additionally, we show that the conserved RING domain proteins ZHP-3/4 diffuse along the SC and remain dynamic following their accumulation at recombination sites. Based on these and previous findings we propose a model in which recombination nodules arise through spatially restricted biomolecular condensation and then undergo a regulated coarsening process, resulting in crossover interference.


1997 ◽  
Vol 139 (2) ◽  
pp. 459-467 ◽  
Author(s):  
Carol A. Bascom-Slack ◽  
Dean S. Dawson

The recognition and alignment of homologous chromosomes early in meiosis is essential for their subsequent segregation at anaphase I; however, the mechanism by which this occurs is unknown. We demonstrate here that, in the absence of the molecular motor, Kar3p, meiotic cells are blocked with prophase monopolar microtubule arrays and incomplete synaptonemal complex (SC) formation. kar3 mutants exhibit very low levels of heteroallelic recombination. kar3 mutants do produce double-strand breaks that act as initiation sites for meiotic recombination in yeast, but at levels severalfold reduced from wild-type. These data are consistent with a meiotic role for Kar3p in the events that culminate in synapsis of homologues.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ofer Rog ◽  
Simone Köhler ◽  
Abby F Dernburg

The synaptonemal complex (SC) is a polymer that spans ~100 nm between paired homologous chromosomes during meiosis. Its striated, periodic appearance in electron micrographs led to the idea that transverse filaments within this structure ‘crosslink’ the axes of homologous chromosomes, stabilizing their pairing. SC proteins can also form polycomplexes, three-dimensional lattices that recapitulate the periodic structure of SCs but do not associate with chromosomes. Here we provide evidence that SCs and polycomplexes contain mobile subunits and that their assembly is promoted by weak hydrophobic interactions, indicative of a liquid crystalline phase. We further show that in the absence of recombination intermediates, polycomplexes recapitulate the dynamic localization of pro-crossover factors during meiotic progression, revealing how the SC might act as a conduit to regulate chromosome-wide crossover distribution. Properties unique to liquid crystals likely enable long-range signal transduction along meiotic chromosomes and underlie the rapid evolution of SC proteins.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 519-532 ◽  
Author(s):  
Monika Molnar ◽  
Sandro Parisi ◽  
Yoshito Kakihara ◽  
Hiroshi Nojima ◽  
Ayumu Yamamoto ◽  
...  

Abstract rec7 is involved in intra- and intergenic meiotic recombination in all tested regions of the genome of the fission yeast Schizosaccharomyces pombe. Segregational analysis in a rec7 gene disruption mutant revealed frequent occurrence of two-spored asci. Spores giving rise to diploid colonies were shown to derive from skipping of the second meiotic division. Nondisjunction of homologous chromosomes at the first meiotic division was also frequent. The cytological structures and processes, such as formation of linear elements, pairing of homologous chromosomes, and clustering of telomeres and centromeres, are regular in the mutant. Northern blot experiments revealed meiosis-specific expression of rec7. Screening of a meiotic cDNA library also identified transcripts from the opposite strand in the rec7 region. A Rec7-GFP fusion protein was localized in the nucleus of whole cells before karyogamy, during prophase, and after meiosis I. On spreads of prophase nuclei approximately 50 foci of Rec7-GFP were counted. Some of the observed phenotypes of the disruption mutant and the N-terminal sequence homology suggest that Rec7p is a functional homolog of Rec114p of Saccharomyces cerevisiae. The observed phenotypes of the disruption and the appearance of Rec7-GFP in mating haploid cells and after meiosis I are consistent with Rec7p functions before, during, and after meiotic prophase.


2018 ◽  
Author(s):  
Luciana Previato de Almeida ◽  
Jared M. Evatt ◽  
Hoa H. Chuong ◽  
Emily L. Kurdzo ◽  
Craig A. Eyster ◽  
...  

ABSTRACTFaithful chromosome segregation during meiosis I depends upon the formation of connections between homologous chromosomes. Crossovers between homologs connect the partners allowing them to attach to the meiotic spindle as a unit, such that they migrate away from one another at anaphase I. Homologous partners also become connected by pairing of their centromeres in meiotic prophase. This centromere pairing can promote proper segregation at anaphase I of partners that have failed to become joined by a crossover. Centromere pairing is mediated by synaptonemal complex (SC) proteins that persist at the centromere when the SC disassembles. Here, using mouse spermatocyte and yeast model systems, we tested the role of shugoshin in promoting meiotic centromere pairing by protecting centromeric synaptonemal components from disassembly. The results show that shugoshin protects centromeric SC in meiotic prophase and, in anaphase, promotes the proper segregation of partner chromosomes that are not linked by a crossover.SIGNIFICANCEMeiotic crossovers form a connection between homologous chromosomes that allows them to attach to the spindle as a single unit in meiosis I. In humans, failures in this process are a leading cause of aneuploidy. A recently described process, called centromere pairing, can also help connect meiotic chromosome partners in meiosis. Homologous chromosomes become tightly joined by a structure called the synaptonemal complex (SC) in meiotic prophase. After the SC disassembles, persisting SC proteins at the centromeres mediate their pairing. Here, studies in mouse spermatocytes and yeast are used to show that the shugoshin protein helps SC components persist at centromeres and helps centromere pairing promote the proper segregation of yeast chromosomes that fail to become tethered by crossovers.


2017 ◽  
Author(s):  
Simon David Brown ◽  
Olga Dorota Jarosinska ◽  
Alexander Lorenz

AbstractHop1 is a component of the meiosis-specific chromosome axis and belongs to the evolutionarily conserved family of HORMA domain proteins. Hop1 and its orthologs in higher eukaryotes are a major factor in promoting double-strand DNA break formation and inter-homolog recombination. In budding yeast and mammals they are also involved in a meiotic checkpoint kinase cascade monitoring the completion of double-strand DNA break repair. We used the fission yeast, Schizosaccharomyces pombe, which lacks a canonical synaptonemal complex to test whether Hop1 has a role beyond supporting the generation of double-strand DNA breaks and facilitating inter-homolog recombination events. We determined how mutants of homologous recombination factors genetically interact with hop1, studied the role(s) of the HORMA domain of Hop1, and characterized a bio-informatically predicted interactor of Hop1, Aho1 (SPAC688.03c). Our observations indicate that in fission yeast, Hop1 does require its HORMA domain to support wild-type levels of meiotic recombination and localization to meiotic chromatin. Furthermore, we show that hop1Δ only weakly interacts genetically with mutants of homologous recombination factors, and in fission yeast likely has no major role beyond break formation and promoting inter-homolog events. We speculate that after the evolutionary loss of the synaptonemal complex, Hop1 likely has become less important for modulating recombination outcome during meiosis in fission yeast, and that this led to a concurrent rewiring of genetic pathways controlling meiotic recombination.


Sign in / Sign up

Export Citation Format

Share Document