band depth
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
Marcel Hess ◽  
Christian Wöhler ◽  
Alexey A. Berezhnoy ◽  
Janice L. Bishop ◽  
Vladislav V. Shevchenko

We investigate the interrelation between the hydration of the lunar regolith and the mineral composition of the surface of the Moon with respect to the concentrations of plagioclase, TiO2 (highly correlated with the oxide mineral ilmenite), and Mg-spinel. The spectral properties of lunar regions with a low concentration of plagioclase or a high concentration of TiO2 or Mg-spinel show a significant reduction in hydration at lunar midday compared to other compositions. This suggests that these oxide minerals contain less of the strongly bound OH component, which is not removed at lunar midday. The time-of-day-dependent variation of the 3 μm band depth is greater in TiO2-rich areas compared to other mare regions. The TiO2-rich regions therefore appear to have a strong tendency to adsorb solar wind-induced hydrogen into binding states of low energy that can more readily desorb and readsorb OH/H2O on a daily basis.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1328
Author(s):  
Katrin Stephan ◽  
Mauro Ciarniello ◽  
Olivier Poch ◽  
Bernard Schmitt ◽  
David Haack ◽  
...  

Laboratory measurements were performed to study the spectral signature of H2O ice between 0.4 and 4.2 µm depending on varying temperatures between 70 and 220 K. Spectral parameters of samples with particle sizes up to ~1360 µm, particle size mixtures, and different particle shapes were analyzed. The band depth (BD) of the major H2O-ice absorptions at 1.04, 1.25, 1.5, and 2 µm offers an excellent indicator for varying particle sizes in pure H2O ice. The spectral changes due to temperature rather, but not exclusively, affect the H2O-ice absorptions located at 1.31, 1.57, and 1.65 µm and the Fresnel reflection peaks at 3.1 and 3.2 µm, which strongly weaken with increasing temperature. As the BDs of the H2O-ice absorptions at 1.31, 1.57, and 1.65 µm increase, the band centers (BCs) of the H2O-ice absorptions at 1.25 and 1.5 µm slightly shift to shorter wavelengths. However, the BCs of the strong H2O-ice absorptions can also be affected by saturation in the case of large particles. The collected spectra provide a useful spectral library for future investigations of icy satellites such as Ganymede and Callisto, the major targets of ESA’s JUICE mission.


2021 ◽  
Vol 162 (6) ◽  
pp. 258
Author(s):  
Mu-Tian Wang ◽  
Hui-Gen Liu ◽  
Jiapeng Zhu ◽  
Ji-Lin Zhou

Abstract The Kepler mission’s single-band photometry suffers from astrophysical false positives, most commonly of background eclipsing binaries (BEBs) and companion transiting planets (CTPs). Multicolor photometry can reveal the color-dependent depth feature of false positives and thus exclude them. In this work, we aim to estimate the fraction of false positives that cannot be classified by Kepler alone but can be identified from their color-dependent depth feature if a reference band (z, K s , and Transiting Exoplanet Survey Satellite (TESS)) is adopted in follow-up observation. We construct physics-based blend models to simulate multiband signals of false positives. Nearly 65%–95% of the BEBs and more than 80% of the CTPs that host a Jupiter-sized planet will show detectable depth variations if the reference band can achieve a Kepler-like precision. The K s band is most effective in eliminating BEBs exhibiting features of any depth, while the z and TESS bands are better for identifying giant candidates, and their identification rates are more sensitive to photometric precision. Given the radius distribution of planets transiting the secondary star in binary systems, we derive a formalism to calculate the overall identification rate for CTPs. By comparing the likelihood distribution of the double-band depth ratio for BEB and planet models, we calculate the false-positive probability (FPP) for typical Kepler candidates. Additionally, we show that the FPP calculation helps distinguish the planet candidate’s host star in an unresolved binary system. The framework of the analysis in this paper can be easily adapted to predict the multicolor photometric yield for other transit surveys, especially TESS.


2021 ◽  
Vol 13 (17) ◽  
pp. 3376
Author(s):  
Raquel Serrano-Calvo ◽  
Mark E. J. Cutler ◽  
Anthony Glyn Bengough

Remote sensing holds great potential for detecting stress in vegetation caused by hydrocarbons, but we need to better understand the effects of hydrocarbons on plant growth and specific spectral expression. Willow (Salix viminalis var. Tora) cuttings and maize (Zea mays var. Lapriora) seedlings were grown in pots of loam soil containing a hydrocarbon-contaminated layer at the base of the pot (crude or refined oil) at concentrations of 0.5, 5, or 50 g·kg−1. Chlorophyll concentration, biomass, and growth of plants were determined through destructive and nondestructive sampling, whilst reflectance measurements were made using portable hyperspectral spectrometers. All biophysical (chlorophyll concentration and growth) variables decreased in the presence of high concentrations of hydrocarbons, but at lower concentrations an increase in growth and chlorophyll were often observed with respect to nonpolluted plants, suggesting a biphasic response to hydrocarbon presence. Absorption features were identified that related strongly to pigment concentration and biomass. Variations in absorption feature characteristics (band depth, band area, and band width) were dependent upon the hydrocarbon concentration and type, and showed the same biphasic pattern noted in the biophysical measurements. This study demonstrates that the response of plants to hydrocarbon pollution varies according to hydrocarbon concentration and that remote sensing has the potential to both detect and monitor the variable impacts of pollution in the landscape.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gabriele E. Arnold ◽  
Verena Foerster ◽  
Martin H. Trauth ◽  
Henry Lamb ◽  
Frank Schaebitz ◽  
...  

Establishing robust environmental proxies at newly investigated terrestrial sedimentary archives is a challenge, because straightforward climate reconstructions can be hampered by the complex relationship between climate parameters and sediment composition, proxy preservation or (in)sufficient sample material. We present a minimally invasive hyperspectral bidirectional reflectance analysis on discrete samples in the wavelength range from 0.25 to 17 µm on 35 lacustrine sediment core samples from the Chew Bahir Basin, southern Ethiopia for climate proxy studies. We identified and used absorption bands at 2.2 μm (Al–OH), at 2.3 μm (Mg–OH), at 1.16 μm (analcime), and at 3.98 μm (calcite) for quantitative spectral analysis. The band depth ratios at 2.3/2.2 μm in the spectra correlate with variations in the potassium content of the sediment samples, which also reflect periods of increased Al-to-Mg substitution in clay minerals during drier climatic episodes. During these episodes of drier conditions, absorption bands diagnostic of the presence of analcime and calcite support this interpretation, with analcime indicating the driest conditions. These results could be compared to qualitative analysis of other characteristic spectral properties in the spectral range between 0.25 and 17 µm. The results of the hyperspectral measurements complement previous sedimentological and geochemical analyses, allowing us in particular to resolve more finely the processes of weathering in the catchment and low-temperature authigenic processes in the sediment. This enables us to better understand environmental changes in the habitat of early humans.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 641
Author(s):  
Ali Shebl ◽  
Mahmoud Abdellatif ◽  
Sayed O. Elkhateeb ◽  
Árpád Csámer

In this research, airborne geophysical and remote sensing datasets were integrated for gold potentiality mapping (GPM) over the Atalla area in Central Eastern Desert, Egypt. Utilizing aeromagnetic data, detailed structural complexity maps were constructed using the center for exploration targeting (CET) procedure. Then, spectrometric gamma-ray data primarily located hydrothermally altered tracts with discriminating various rock units. The latter are precisely outlined by implementing various techniques (false-color composite (FCC), band ratio (BR), relative absorption band depth (RBD), directed principal component analysis (DPCA), and constrained energy minimization (CEM)) to ASTER, Sentinel 2 and ALOS PRISM datasets, with reference to the geological maps. The study exhibits that gold mineralization is structurally controlled by NW-SE direction. The findings of structural complexity and hydrothermal alteration (argillic, advanced argillic, phyllic, and propylitic) were used as weighted inputs for contouring gold potentiality. The resultant GPM accentuated five gold-promising zones; two are confirmed via locations of ancient gold mines, while the remaining three zones are strongly recommended for their gold potentiality.


2021 ◽  
Vol 13 (11) ◽  
pp. 2101
Author(s):  
Arindam Guha ◽  
Uday Kumar Ghosh ◽  
Joyasree Sinha ◽  
Amin Beiranvand Pour ◽  
Ratnakar Bhaisal ◽  
...  

In this study, we have processed the spectral bands of airborne hyperspectral data of Advanced Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) data for delineating the surface signatures associated with the base metal mineralization in the Pur-Banera area in the Bhilwara district, Rajasthan, India.The primaryhost rocks of the Cu, Pb, Zn mineralization in the area are Banded Magnetite Quartzite (BMQ), unclassified calcareous silicates, and quartzite. We used ratio images derived from the scale and root mean squares (RMS) error imagesusing the multi-range spectral feature fitting (MRSFF) methodto delineate host rocks from the AVIRIS-NG image. The False Color Composites (FCCs) of different relative band depth images, derived from AVIRIS-NG spectral bands, were also used for delineating few minerals. These minerals areeither associated with the surface alteration resulting from the ore-bearing fluid migration orassociated with the redox-controlled supergene enrichments of the ore deposit.The results show that the AVIRIS-NG image products derived in this study can delineate surface signatures of mineralization in 1:10000 to 1:15000 scales to narrow down the targets for detailed exploration.This study alsoidentified the possible structural control over the knownsurface distribution of alteration and lithocap minerals of base metal mineralizationusing the ground-based residual magnetic anomaly map. This observationstrengthens the importance of the identified surface proxiesas an indicator of mineralization. X-ray fluorescence analysis of samples collectedfromselected locations within the study area confirms the Cu-Pb-Zn enrichment. The sulfide minerals were also identified in the microphotographs of polished sections of rock samples collected from the places where surface proxies of mineralization were observed in the field. This study justified the investigation to utilize surface signatures of mineralization identified using AVIRIS-NG dataand validated using field observations, geophysical, geochemical, and petrographical data.


2021 ◽  
Author(s):  
Lucie Riu ◽  
Cédric Pilorget ◽  
Ralph Milliken ◽  
Kohei Kitazato ◽  
Tomoki Nakamura ◽  
...  

<div> <p>Asteroid Ryugu was observed up close for almost a year and a half by the instruments on-board the Japanese Aerospace eXploration Agency (JAXA) Hayabusa2 spacecraft. It has been shown that in the near-infrared wavelength ranges, the asteroid exhibits relatively homogeneous spectral characteristics: including a very low reflectance factor, a slight red slope towards longer wavelengths, and a narrow and weak absorption feature centered at 2.72 <span>μ</span>m. Numerous craters have been identified at the surface of Ryugu. These features provide good candidates for studying more recently exposed near-surface material to further assess potential spectral/compositional heterogeneities of Ryugu. We present here the results of a spectral survey of all previously identified and referenced craters (Hirata et al. 2020) based on reflectance data acquired by the NIRS3 spectrometer. Globally, we find that the spectral properties inside and outside of craters are very similar, indicating that subsurface material is either compositionally similar to material at the surface that has a longer exposure age or that material at Ryugu’s optical surface is spectrally altered over relatively short timescales by external factors such as space weathering. The 2.72 <span>μ</span>m band depth, present on the overall surface, exhibits a slight anti-correlation with the reflectance factor selected at 2 <span>μ</span>m, which could indicate different surface properties (<em>e.g.</em>, grain size and/or porosity) or different alteration processes (<em>e.g.</em>, space weathering, shock metamorphism and/or solar heating). We identified four different spectral classes based on their reflectance factor at 2 <span>μ</span>m and 2.72 <span>μ</span>m absorption strength. The most commonly spectral behavior associated with crater floors, is defined by a slightly lower reflectance at 2 <span>μ</span>m and deeper band depth. These spectral characteristics are similar to those of subsurface material excavated by the Hayabusa2 small carry-on impactor (SCI) experiment, suggesting these spectral characteristics may represent materials with a younger surface exposure age. Conversely, these materials may have experienced significant solar heating and desiccation to form finer grains that subsequently migrated towards and preferentially accumulated in areas of low geopotential, such as craters floors. Detailed analyses of the returned samples of Ryugu that are now being investigated at the curation facility in ISAS will allow for further testing of these formation and alteration hypotheses.<span> </span></p> </div>


Sign in / Sign up

Export Citation Format

Share Document