scholarly journals The weak-gravity bound and the need for spin in asymptotically safe matter-gravity models

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Gustavo P. de Brito ◽  
Astrid Eichhorn ◽  
Rafael Robson Lino dos Santos

Abstract We discover a weak-gravity bound in scalar-gravity systems in the asymptotic-safety paradigm. The weak-gravity bound arises in these systems under the approximations we make, when gravitational fluctuations exceed a critical strength. Beyond this critical strength, gravitational fluctuations can generate complex fixed-point values in higher-order scalar interactions. Asymptotic safety can thus only be realized at sufficiently weak gravitational interactions. We find that within truncations of the matter-gravity dynamics, the fixed point lies beyond the critical strength, unless spinning matter, i.e., fermions and vectors, is also included in the model.

2018 ◽  
Vol 5 (4) ◽  
Author(s):  
Astrid Eichhorn ◽  
Peter Labus ◽  
Jan M. Pawlowski ◽  
Manuel Reichert

We investigate the asymptotic safety scenario for a scalar-gravity system. This system contains two avatars of the dynamical Newton coupling, a gravitational self-coupling and a scalar-graviton coupling. We uncover an effective universality for the dynamical Newton coupling on the quantum level: its momentum-dependent avatars are in remarkable quantitative agreement in the scaling regime of the UV fixed point. For the background Newton coupling, this effective universality is not present, but qualitative agreement remains.


2009 ◽  
Vol 24 (28) ◽  
pp. 2233-2241 ◽  
Author(s):  
DARIO BENEDETTI ◽  
PEDRO F. MACHADO ◽  
FRANK SAUERESSIG

We study the nonperturbative renormalization group flow of higher-derivative gravity employing functional renormalization group techniques. The nonperturbative contributions to the β-functions shift the known perturbative ultraviolet fixed point into a nontrivial fixed point with three UV-attractive and one UV-repulsive eigendirections, consistent with the asymptotic safety conjecture of gravity. The implication of this transition on the unitarity problem, typically haunting higher-derivative gravity theories, is discussed.


2021 ◽  
Author(s):  
Noureddine Bouteraa ◽  
Habib Djourdem

In this chapter, firstly we apply the iterative method to establish the existence of the positive solution for a type of nonlinear singular higher-order fractional differential equation with fractional multi-point boundary conditions. Explicit iterative sequences are given to approximate the solutions and the error estimations are also given. Secondly, we cover the multi-valued case of our problem. We investigate it for nonconvex compact valued multifunctions via a fixed point theorem for multivalued maps due to Covitz and Nadler. Two illustrative examples are presented at the end to illustrate the validity of our results.


2017 ◽  
Vol 668 ◽  
pp. 27-42 ◽  
Author(s):  
Angelos Charalambidis ◽  
Panos Rondogiannis ◽  
Ioanna Symeonidou

2017 ◽  
Vol 32 (08) ◽  
pp. 1750048 ◽  
Author(s):  
Antonio Accioly ◽  
Gilson Correia ◽  
Gustavo P. de Brito ◽  
José de Almeida ◽  
Wallace Herdy

Simple prescriptions for computing the D-dimensional classical potential related to electromagnetic and gravitational models, based on the functional generator, are built out. These recipes are employed afterward as a support for probing the premise that renormalizable higher-order systems have a finite classical potential at the origin. It is also shown that the opposite of the conjecture above is not true. In other words, if a higher-order model is renormalizable, it is necessarily endowed with a finite classical potential at the origin, but the reverse of this statement is untrue. The systems used to check the conjecture were D-dimensional fourth-order Lee–Wick electrodynamics, and the D-dimensional fourth- and sixth-order gravity models. A special attention is devoted to New Massive Gravity (NMG) since it was the analysis of this model that inspired our surmise. In particular, we made use of our premise to resolve trivially the issue of the renormalizability of NMG, which was initially considered to be renormalizable, but it was shown some years later to be non-renormalizable. We remark that our analysis is restricted to local models in which the propagator has simple and real poles.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1893
Author(s):  
Feng ◽  
Feng ◽  
Wen

In this paper, a fixed-point iterative filter developed from the classical extended Kalman filter (EKF) was proposed for general nonlinear systems. As a nonlinear filter developed from EKF, the state estimate was obtained by applying the Kalman filter to the linearized system by discarding the higher-order Taylor series items of the original nonlinear system. In order to reduce the influence of the discarded higher-order Taylor series items and improve the filtering accuracy of the obtained state estimate of the steady-state EKF, a fixed-point function was solved though a nested iterative method, which resulted in a fixed-point iterative filter. The convergence of the fixed-point function is also discussed, which provided the existing conditions of the fixed-point iterative filter. Then, Steffensen’s iterative method is presented to accelerate the solution of the fixed-point function. The final simulation is provided to illustrate the feasibility and the effectiveness of the proposed nonlinear filtering method.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jia-Bao Liu ◽  
Asma Rashid Butt ◽  
Shahzad Nadeem ◽  
Shahbaz Ali ◽  
Muhammad Shoaib

In this paper, we establish some theorems of fixed point on multivalued mappings satisfying contraction mapping by using gauge function. Furthermore, we use Q - and R -order of convergence. Our main results extend many previous existing results in the literature. Consequently, to substantiate the validity of proposed method, we give its application in integral inclusion.


Sign in / Sign up

Export Citation Format

Share Document