peripheral injury
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 12)

H-INDEX

22
(FIVE YEARS 2)

Neuron ◽  
2021 ◽  
Author(s):  
Jesse K. Niehaus ◽  
Bonnie Taylor-Blake ◽  
Lipin Loo ◽  
Jeremy M. Simon ◽  
Mark J. Zylka
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Maria L. Rangel ◽  
Lidiane Souza ◽  
Erika C. Rodrigues ◽  
José M. Oliveira ◽  
Michelle F. Miranda ◽  
...  

Predicting upcoming sensorimotor events means creating forward estimates of the body and the surrounding world. This ability is a fundamental aspect of skilled motor behavior and requires an accurate and constantly updated representation of the body and the environment. To test whether these prediction mechanisms could be affected by a peripheral injury, we employed an action observation and electroencephalogram (EEG) paradigm to assess the occurrence of prediction markers in anticipation of observed sensorimotor events in healthy and brachial plexus injury (BPI) participants. Nine healthy subjects and six BPI patients watched a series of video clips showing an actor’s hand and a colored ball in an egocentric perspective. The color of the ball indicated whether the hand would grasp it (hand movement), or the ball would roll toward the hand and touch it (ball movement), or no event would occur (no movement). In healthy participants, we expected to find distinct electroencephalographic activation patterns (EEG signatures) specific to the prediction of the occurrence of each of these situations. Cluster analysis from EEG signals recorded from electrodes placed over the sensorimotor cortex of control participants showed that predicting either an upcoming hand movement or the occurrence of a tactile event yielded specific neural signatures. In BPI participants, the EEG signals from the sensorimotor cortex contralateral to the dominant hand in the hand movement condition were different compared to the other conditions. Furthermore, there were no differences between ball movement and no movement conditions in the sensorimotor cortex contralateral to the dominant hand, suggesting that BPI blurred specifically the ability to predict upcoming tactile events for the dominant hand. These results highlight the role of the sensorimotor cortex in creating estimates of both actions and tactile interactions in the space around the body and suggest plastic effects on prediction coding following peripheral sensorimotor loss.


2021 ◽  
Vol 16 ◽  
pp. 117727192110534
Author(s):  
Ker Rui Wong ◽  
William T O’Brien ◽  
Mujun Sun ◽  
Glenn Yamakawa ◽  
Terence J O’Brien ◽  
...  

Introduction: Serum neurofilament light (NfL) is an emerging biomarker of traumatic brain injury (TBI). However, the effect of peripheral injuries such as long bone fracture and skeletal muscle injury on serum NfL levels is unknown. Therefore, the aim of this study was to determine whether serum NfL levels can be used as a biomarker of TBI in the presence of concomitant peripheral injuries. Methods: Rats were randomly assigned to one of four injury groups: polytrauma (muscle crush + fracture + TBI; n = 11); peripheral injuries (muscle crush + fracture + sham-TBI; n = 12); TBI-only (sham-muscle crush + sham-fracture + TBI; n = 13); and triple-sham (n = 7). At 2-days post-injury, serum levels of NfL were quantified using a Simoa HD-X Analyzer. Results: Compared to triple-sham rats, serum NfL concentrations were higher in rats with peripheral injuries-only, TBI-only, and polytrauma. When compared to peripheral injury-only rats, serum NfL levels were higher in TBI-only and polytrauma rats. No differences were found between TBI-only and polytrauma rats. Conclusion: Serum NfL levels did not differ between TBI-only and polytrauma rats, indicating that significant peripheral injuries did not affect the sensitivity and specificity of serum NfL as a biomarker of moderate TBI. However, the finding of elevated serum NfL levels in rats with peripheral injuries in the absence of a TBI suggests that the presence of such injuries may limit the utility of NfL as a biomarker of less severe TBI (eg, concussion).


2021 ◽  
pp. 23-32
Author(s):  
Miroslav Backonja ◽  
Victor Wang
Keyword(s):  

2020 ◽  
Vol 33 (2) ◽  
pp. 131-137
Author(s):  
Francis Sahngun Nahm ◽  
Jae-Sung Lee ◽  
Pyung-Bok Lee ◽  
Eunjoo Choi ◽  
Woong Ki Han ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 302 ◽  
Author(s):  
Julia Sala-Jarque ◽  
Francina Mesquida-Veny ◽  
Maider Badiola-Mateos ◽  
Josep Samitier ◽  
Arnau Hervera ◽  
...  

Peripheral nerve injuries, including motor neuron axonal injury, often lead to functional impairments. Current therapies are mostly limited to surgical intervention after lesion, yet these interventions have limited success in restoring functionality. Current activity-based therapies after axonal injuries are based on trial-error approaches in which the details of the underlying cellular and molecular processes are largely unknown. Here we show the effects of the modulation of both neuronal and muscular activity with optogenetic approaches to assess the regenerative capacity of cultured motor neuron (MN) after lesion in a compartmentalized microfluidic-assisted axotomy device. With increased neuronal activity, we observed an increase in the ratio of regrowing axons after injury in our peripheral-injury model. Moreover, increasing muscular activity induces the liberation of leukemia inhibitory factor and glial cell line-derived neurotrophic factor in a paracrine fashion that in turn triggers axonal regrowth of lesioned MN in our 3D hydrogel cultures. The relevance of our findings as well as the novel approaches used in this study could be useful not only after axotomy events but also in diseases affecting MN survival.


2019 ◽  
Vol 121 (6) ◽  
pp. 2300-2307 ◽  
Author(s):  
Serajul I. Khan ◽  
Charles C. Della Santina ◽  
Americo A. Migliaccio

The role of the otoliths in mammals in the normal angular vestibuloocular reflex (VOR) was characterized in an accompanying study based on the Otopetrin1 (Otop1) mouse, which lacks functioning otoliths because of failure to develop otoconia but seems to have otherwise normal peripheral anatomy and neural circuitry. That study showed that otoliths do not contribute to the normal horizontal (rotation about Earth-vertical axis parallel to dorso-ventral axis) and vertical (rotation about Earth-vertical axis parallel to interaural axis) angular VOR but do affect gravity context-specific VOR adaptation. By using these animals, we sought to determine whether the otoliths play a role in the angular VOR after unilateral labyrinthectomy when the total canal signal is reduced. In five Otop1 mice and five control littermates we measured horizontal and vertical left-ear-down and right-ear-down sinusoidal VOR (0.2–10 Hz, 20–100°/s) during the early (3–5 days) and plateau (28–32 days) phases of compensation after unilateral labyrinthectomy and compared these measurements with baseline preoperative responses from the accompanying study. From similar baselines, acute gain loss was ~25% less in control mice, and chronic gain recovery was ~40% more in control mice. The acute data suggest that the otoliths contribute to the angular VOR when there is a loss of canal function. The chronic data suggest that a unilateral otolith signal can significantly improve angular VOR compensation. These data have implications for vestibular rehabilitation of patients with both canal and otolith loss and the development of vestibular implants, which currently only mimic the canals on one side.NEW & NOTEWORTHY This is the first study examining the role of the otoliths (defined here as the utricle and saccule) on the acute and chronic angular vestibuloocular reflex (VOR) after unilateral labyrinthectomy in an animal model in which the otoliths are reliably inactivated and the semicircular canals preserved. This study shows that the otolith signal is used to augment the acute angular VOR and help boost VOR compensation after peripheral injury.


2019 ◽  
Author(s):  
Michelle L. Kloc ◽  
Bruno Pradier ◽  
Anda M. Chirila ◽  
Julie A. Kauer

AbstractOf the fast ionotropic synapses, glycinergic synapses are the least well understood, but are vital for the maintenance of inhibitory signaling in the brain and spinal cord. Glycinergic signaling comprises half of the inhibitory signaling in the spinal cord, and glycinergic synapses are likely to regulate local nociceptive processing as well as the transmission to the brain of peripheral nociceptive information. Here we have investigated the rapid and prolonged potentiation of glycinergic synapses in the superficial dorsal horn of young male and female mice after brief activation of NMDA receptors (NMDARs). Glycinergic inhibitory postsynaptic currents (IPSCs) evoked with lamina II-III stimulation in identified GABAergic neurons in lamina II were potentiated by bath-applied Zn2+ and were depressed by the prostaglandin PGE2, consistent with the presence of both GlyRα1- and GlyRα3-containing receptors. NMDA application rapidly potentiated synaptic glycinergic currents. Whole-cell currents evoked by exogenous glycine were also rapidly potentiated by NMDA, indicating that the potentiation results from altered numbers or conductance of postsynaptic glycine receptors. Repetitive depolarization alone of the postsynaptic GABAergic neuron also potentiated glycinergic synapses, and intracellular EGTA prevented both NMDA-induced and depolarization-induced potentiation of glycinergic IPSCs. Driving trpv1 lineage afferents optogenetically also triggered NMDAR-dependent potentiation of glycinergic synapses. Our results suggest that during peripheral injury or inflammation, nociceptor firing during injury is likely to potentiate glycinergic synapses on GABAergic neurons. This disinhibition mechanism may be engaged rapidly, altering dorsal horn circuitry to promote the transmission of nociceptive information to the brain.SignificanceOf the fast ionotropic synapses, glycinergic synapses are the least well understood, yet glycinergic synapses comprise half of the inhibition in the spinal cord, and are likely to regulate local nociceptive processing as well as the transmission to the brain of peripheral nociceptive information. Here we report that bath applied NMDA, repetitive postsynaptic depolarization, or optogenetic activation of primary nociceptor afferents all produce LTP at superficial dorsal horn synapses. During peripheral injury or inflammation, nociceptor firing is likely to engage this mechanism in inhibitory neurons, rapidly altering dorsal horn circuitry to promote the transmission of nociceptive information to the brain.


Sign in / Sign up

Export Citation Format

Share Document