scholarly journals Neuromuscular Activity Induces Paracrine Signaling and Triggers Axonal Regrowth after Injury in Microfluidic Lab-On-Chip Devices

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 302 ◽  
Author(s):  
Julia Sala-Jarque ◽  
Francina Mesquida-Veny ◽  
Maider Badiola-Mateos ◽  
Josep Samitier ◽  
Arnau Hervera ◽  
...  

Peripheral nerve injuries, including motor neuron axonal injury, often lead to functional impairments. Current therapies are mostly limited to surgical intervention after lesion, yet these interventions have limited success in restoring functionality. Current activity-based therapies after axonal injuries are based on trial-error approaches in which the details of the underlying cellular and molecular processes are largely unknown. Here we show the effects of the modulation of both neuronal and muscular activity with optogenetic approaches to assess the regenerative capacity of cultured motor neuron (MN) after lesion in a compartmentalized microfluidic-assisted axotomy device. With increased neuronal activity, we observed an increase in the ratio of regrowing axons after injury in our peripheral-injury model. Moreover, increasing muscular activity induces the liberation of leukemia inhibitory factor and glial cell line-derived neurotrophic factor in a paracrine fashion that in turn triggers axonal regrowth of lesioned MN in our 3D hydrogel cultures. The relevance of our findings as well as the novel approaches used in this study could be useful not only after axotomy events but also in diseases affecting MN survival.

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 43
Author(s):  
Chao Shan ◽  
Qing Yang ◽  
Hao Bian ◽  
Xun Hou ◽  
Feng Chen

Nested structures inside the hard material play a pivotal role in the microfluidics systems, such as the microvalve and the micropump. In this article, we demonstrate a novel and facile method of fabricating nested structures inside the fused silica with a two-step process femtosecond laser wet etching (FLWE) process. Inside fused silica, a spherical structure was made with a diameter of nearly 80 µm in a square chamber. In addition, we designed a simple microvalve with this sphere controlling the current’s flow. The novel microvalve structure can be easily integrated into the functional microfluidics systems and will be widely applied in the Lab-on-chip (LOC) system.


2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


2021 ◽  
pp. 2004101
Author(s):  
Marco Giacometti ◽  
Francesca Milesi ◽  
Pietro Lorenzo Coppadoro ◽  
Alberto Rizzo ◽  
Federico Fagiani ◽  
...  
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1113
Author(s):  
Mohammed Asadullah Khan ◽  
Jürgen Kosel

An integrated polymer-based magnetohydrodynamic (MHD) pump that can actuate saline fluids in closed-channel devices is presented. MHD pumps are attractive for lab-on-chip applications, due to their ability to provide high propulsive force without any moving parts. Unlike other MHD devices, a high level of integration is demonstrated by incorporating both laser-induced graphene (LIG) electrodes as well as a NdFeB magnetic-flux source in the NdFeB-polydimethylsiloxane permanent magnetic composite substrate. The effects of transferring the LIG film from polyimide to the magnetic composite substrate were studied. Operation of the integrated magneto hydrodynamic pump without disruptive bubbles was achieved. In the studied case, the pump produces a flow rate of 28.1 µL/min. while consuming ~1 mW power.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Subhan Shaik ◽  
Aarthi Saminathan ◽  
Deepak Sharma ◽  
Jagdish A Krishnaswamy ◽  
D Roy Mahapatra

Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 65
Author(s):  
Puneet Manocha ◽  
Gitanjali Chandwani

Molecular communication is a bioinspired communication that enables macro-scale, micro-scale and nano-scale devices to communicate with each other. The molecular communication system is prone to severe signal attenuation, dispersion and delay, which leads to performance degradation as the distance between two communicating devices increases. To mitigate these challenges, relays are used to establish reliable communication in microfluidic channels. Relay assisted molecular communication systems can also enable interconnection among various entities of the lab-on-chip for sharing information. Various relaying schemes have been proposed for reliable molecular communication systems, most of which lack practical feasibility. Thus, it is essential to design and develop relays that can be practically incorporated into the microfluidic channel. This paper presents a novel design of passive in-line relay for molecular communication system that can be easily embedded in the microfluidic channel and operate without external energy. Results show that geometric modification in the microfluidic channel can act as a relay and restore the degraded signal up-to 28%.


2021 ◽  
Vol 8 (14) ◽  
pp. 2170087
Author(s):  
Marco Giacometti ◽  
Francesca Milesi ◽  
Pietro Lorenzo Coppadoro ◽  
Alberto Rizzo ◽  
Federico Fagiani ◽  
...  
Keyword(s):  

2016 ◽  
Vol 20 (10) ◽  
Author(s):  
Nitipon Puttaraksa ◽  
Harry J. Whitlow ◽  
Mari Napari ◽  
Leena Meriläinen ◽  
Leona Gilbert
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document