supersonic velocities
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 0)

2020 ◽  
Vol 153 (4) ◽  
pp. 044117
Author(s):  
M. G. Velarde ◽  
A. P. Chetverikov ◽  
J.-P. Launay ◽  
W. Ebeling ◽  
E. G. Wilson

2019 ◽  
Vol 15 (S354) ◽  
pp. 454-457
Author(s):  
K. Sowmya ◽  
A. Lagg ◽  
S. K. Solanki ◽  
J. S. Castellanos Durán

AbstractAn active region filament in the upper chromosphere is studied using spectropolarimetric data in He i 10830 Å from the GREGOR telescope. A Milne-Eddingon based inversion of the Unno-Rachkovsky equations is used to retrieve the velocity and the magnetic field vector of the region. The plasma velocity reaches supersonic values closer to the feet of the filament barbs and coexist with a slow velocity component. Such supersonic velocities result from the acceleration of the plasma as it drains from the filament spine through the barbs. The line-of-sight magnetic fields have strengths below 200 G in the filament spine and in the filament barbs where fast downflows are located, their strengths range between 100 - 700 G.


2019 ◽  
Author(s):  
V. V. Kozlov ◽  
G. R. Grek ◽  
Yu. A. Litvinenko ◽  
A. G. Shmakov ◽  
V. V. Vikhorev

2018 ◽  
Vol 617 ◽  
pp. A55 ◽  
Author(s):  
S. J. González Manrique ◽  
C. Kuckein ◽  
M. Collados ◽  
C. Denker ◽  
S. K. Solanki ◽  
...  

Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 Å spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 Å triplet. The arch filament expanded in height and extended in length from 13″ to 21″. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s−1. Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s−1 in the chromosphere. The temporal evolution of He I 10 830 Å profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time. Conclusions. We followed the arch filament as it carried plasma during its rise from the photosphere to the corona. The material then drained toward the photosphere, reaching supersonic velocities, along the legs of the arch filament. Our observational results support theoretical AFS models and aids in improving future models.


2018 ◽  
Vol 288 ◽  
pp. 123-130 ◽  
Author(s):  
Caitlin Humphrey ◽  
Maciej Henneberg ◽  
Christian Wachsberger ◽  
Jaliya Kumaratilake

2018 ◽  
Vol 614 ◽  
pp. A86 ◽  
Author(s):  
L. Grassitelli ◽  
N. Langer ◽  
N. J. Grin ◽  
J. Mackey ◽  
J. M. Bestenlehner ◽  
...  

Mass loss by stellar wind is a key agent in the evolution and spectroscopic appearance of massive main sequence and post-main sequence stars. In Wolf–Rayet stars the winds can be so dense and so optically thick that the photosphere appears in the highly supersonic part of the outflow, veiling the underlying subsonic part of the star, and leaving the initial acceleration of the wind inaccessible to observations. Here we investigate the conditions and the structure of the subsonic part of the outflow of Galactic Wolf–Rayet stars, in particular of the WNE subclass; our focus is on the conditions at the sonic point of their winds. We compute 1D hydrodynamic stellar structure models for massive helium stars adopting outer boundaries at the sonic point. We find that the outflows of our models are accelerated to supersonic velocities by the radiative force from opacity bumps either at temperatures of the order of 200 kK by the iron opacity bump or of the order of 50 kK by the helium-II opacity bump. For a given mass-loss rate, the diffusion approximation for radiative energy transport allows us to define the temperature gradient based purely on the local thermodynamic conditions. For a given mass-loss rate, this implies that the conditions in the subsonic part of the outflow are independent from the detailed physical conditions in the supersonic part. Stellar atmosphere calculations can therefore adopt our hydrodynamic models as ab initio input for the subsonic structure. The close proximity to the Eddington limit at the sonic point allows us to construct a sonic HR diagram, relating the sonic point temperature to the luminosity-to-mass ratio and the stellar mass-loss rate, thereby constraining the sonic point conditions, the subsonic structure, and the stellar wind mass-loss rates of WNE stars from observations. The minimum stellar wind mass-loss rate necessary to have the flow accelerated to supersonic velocities by the iron opacity bump is derived. A comparison of the observed parameters of Galactic WNE stars to this minimum mass-loss rate indicates that these stars have their winds launched to supersonic velocities by the radiation pressure arising from the iron opacity bump. Conversely, stellar models which do not show transonic flows from the iron opacity bump form low-density extended envelopes. We derive an analytic criterion for the appearance of envelope inflation and of a density inversion in the outer sub-photospheric layers.


Sign in / Sign up

Export Citation Format

Share Document