scholarly journals State of stress in central and eastern North American seismic zones

2021 ◽  
Author(s):  
S Mazzotti ◽  
John Townend

We use a Bayesian analysis to determine the state of stress from focal mechanisms in ten seismic zones in central and eastern North America and compare it with regional stress inferred from borehole measurements. Comparisons of the seismologically determined azimuth of the maximum horizontal compressive stress (S HS ) with that determined from boreholes (S HB ) exhibit a bimodal pattern: In four zones, the S HS and regional S HB orientations are closely parallel, whereas in the Charlevoix, Lower St. Lawrence, and Central Virginia zones, the S HS azimuth shows a statistically significant 30°-50° clockwise rotation relative to the regional S HB azimuth. This pattern is exemplified by the northwest and southeast seismicity clusters in Charlevoix, which yield S HS orientations strictly parallel and strongly oblique, respectively, to the regional S HB trend. Similar ~30° clockwise rotations are found for the North Appalachian zone and for the 2003 Bardwell earthquake sequence north of the New Madrid zone. The S HB /S HS rotations occur over 20-100 km in each seismic zone, but they are observed in zones separated by distances of up to 1500 km. A possible mechanism for the stress rotations may be the interaction between a long-wavelength stress perturbation source, such as postglacial rebound, and local stress concentrators, such as low-friction faults. The latter would allow low-magnitude (<10 MPa) postglacial rebound stresses to locally perturb the preexisting stress field in some seismic zones, whereas postglacial rebound stresses have little effect on the intraplate state of stress in general. © 2010 Geological Society of America.


2021 ◽  
Author(s):  
S Mazzotti ◽  
John Townend

We use a Bayesian analysis to determine the state of stress from focal mechanisms in ten seismic zones in central and eastern North America and compare it with regional stress inferred from borehole measurements. Comparisons of the seismologically determined azimuth of the maximum horizontal compressive stress (S HS ) with that determined from boreholes (S HB ) exhibit a bimodal pattern: In four zones, the S HS and regional S HB orientations are closely parallel, whereas in the Charlevoix, Lower St. Lawrence, and Central Virginia zones, the S HS azimuth shows a statistically significant 30°-50° clockwise rotation relative to the regional S HB azimuth. This pattern is exemplified by the northwest and southeast seismicity clusters in Charlevoix, which yield S HS orientations strictly parallel and strongly oblique, respectively, to the regional S HB trend. Similar ~30° clockwise rotations are found for the North Appalachian zone and for the 2003 Bardwell earthquake sequence north of the New Madrid zone. The S HB /S HS rotations occur over 20-100 km in each seismic zone, but they are observed in zones separated by distances of up to 1500 km. A possible mechanism for the stress rotations may be the interaction between a long-wavelength stress perturbation source, such as postglacial rebound, and local stress concentrators, such as low-friction faults. The latter would allow low-magnitude (<10 MPa) postglacial rebound stresses to locally perturb the preexisting stress field in some seismic zones, whereas postglacial rebound stresses have little effect on the intraplate state of stress in general. © 2010 Geological Society of America.



2020 ◽  
Vol 91 (3) ◽  
pp. 1831-1845 ◽  
Author(s):  
N. Seth Carpenter ◽  
Andrew S. Holcomb ◽  
Edward W. Woolery ◽  
Zhenming Wang ◽  
John B. Hickman ◽  
...  

Abstract The Rome trough is a northeast-trending graben system extending from eastern Kentucky northeastward across West Virginia and Pennsylvania into southern New York. The oil and gas potential of a formation deep in the trough, the Rogersville shale, which is ∼1  km above Precambrian basement, is being tested in eastern Kentucky. Because induced seismicity can occur from fracking formations in close proximity to basement, a temporary seismic network was deployed along the trend of the Rome trough from June 2015 through May 2019 to characterize natural seismicity. Using empirical noise models and theoretical Brune sources, minimum detectable magnitudes, Mmin, were estimated in the study area. The temporary stations reduced Mmin by an estimated 0.3–0.8 magnitude units in the vicinity of wastewater-injection wells and deep oil and gas wells testing the Rogersville shale. The first 3 yr of seismicity detected and located in the study area has been compiled. Consistent with the long-term seismicity patterns in the Advanced National Seismic System Comprehensive Catalog, very few earthquakes occurred in the crust beneath the Rome trough—only three events were recorded—where the temporary network was most sensitive. None of these events appear to have been associated with Rogersville shale oil and gas test wells. Outside of the trough boundary faults, earthquakes are diffusely distributed in zones extending into southern Ohio to the north, and into the eastern Tennessee seismic zone to the south. The orientations of P axes from the seven first-motion focal mechanisms determined in this study are nearly parallel with both the trend of the Rome trough and with the orientation of maximum horizontal compressive stress in the region. This apparent alignment between the regional stress field and the strikes of faults in the trough at seismogenic depths may explain the relative lack of earthquake activity in the trough compared with the surrounding crust to the north and south.



2010 ◽  
Vol 183 (3) ◽  
pp. 1455-1469 ◽  
Author(s):  
Hajime Shiobara ◽  
Hiroko Sugioka ◽  
Kimihiro Mochizuki ◽  
Satoko Oki ◽  
Toshihiko Kanazawa ◽  
...  


2007 ◽  
Vol 85 (4) ◽  
pp. 584-587 ◽  
Author(s):  
A.J. Sillman ◽  
E.K. Ong ◽  
E.R. Loew

Lake sturgeon ( Acipenser fulvescens Rafinesque, 1817) photoreceptors were studied with scanning electron microscopy and microspectrophotometry. The retina contains both rods and cones, with cones estimated composing about 30% of the photoreceptor population. Only large single cones were identified and they are similar to those found in other species of the order Acipenseriformes. The rods are large, with long, broad outer segments, and are similar to the dominant rod found in other sturgeons and the North American paddlefish ( Polyodon spathula (Walbaum, 1792)). Mean (SD) rod packing density at 22 624 ± 3 509 rods/mm2 is low compared with those of other animals that function primarily in dim light. The visual pigment of the rods has a mean (SD) peak absorbance (λmax) at 541 ± 2 nm. Three different cone populations were identified: a long wavelength sensitive cone containing a visual pigment with λmax at 619 ± 3 nm; middle wavelength sensitive cone with λmax at 538 ± 1 nm; and short wavelength sensitive cone with λmax at 448 ± 1 nm. All the visual pigments are based on the vitamin A2 chromophore.



2020 ◽  
Vol 12 (14) ◽  
pp. 2287
Author(s):  
Xiaoyun Wan ◽  
Richard Fiifi Annan ◽  
Shuanggen Jin ◽  
Xiaoqi Gong

The first Chinese altimetry satellite, Haiyang-2A (HY-2A), which was launched in 2011, has provided a large amount of sea surface heights which can be used to derive marine gravity field. This paper derived the vertical deflections and gravity disturbances using HY-2A observations for the major area of the whole Earth’s ocean from 60°S and 60°N. The results showed that the standard deviations (STD) of vertical deflections differences were 1.1 s and 3.5 s for the north component and the east component between HY-2A’s observations and those from EGM2008 and EIGEN-6C4, respectively. This indicates the accuracy of the east component was poorer than that of the north component. In order to clearly demonstrate contribution of HY-2A’s observations to gravity disturbances, reference models and the commonly used remove-restore method were not adopted in this study. Therefore, the results can be seen as ‘pure’ signals from HY-2A. Assuming the values from EGM2008 were the true values, the accuracy of the gravity disturbances was about −1.1 mGal in terms of mean value of the errors and 8.0 mGal in terms of the STD. This shows systematic errors if only HY-2A observations were used. An index of STD showed that the accuracy of HY-2A was close to the theoretical accuracy according to the vertical deflection products. To verify whether the systematic errors of gravity field were from the long wavelengths, the long-wavelength parts of HY-2A’s gravity disturbance with wavelengths larger than 500 km were replaced by those from EGM2008. By comparing with ‘pure’ HY-2A version of gravity disturbance, the accuracy of the new version products was improved largely. The systematic errors no longer existed and the error STD was reduced to 6.1 mGal.



2020 ◽  
Vol 110 (6) ◽  
pp. 3064-3076
Author(s):  
Chuansong He ◽  
M. Santosh

ABSTRACT The geodynamic features of the north–south seismic zone (NSSZ) and the formation of the Emeishan large igneous province (ELIP) in China remain controversial. In this study, we conducted detailed P-wave teleseismic tomography studies in the NSSZ and adjacent regions. The results revealed large high-velocity anomalies beneath the Songpan–Ganzi Block and the South China Block, possibly representing large-scale lithospheric delamination. We further identified low-velocity structures at 50–200 km depths in the western and southern parts of the NSSZ, suggesting an upwelling asthenosphere induced by delamination and the absence of a rigid lithosphere. Two high-velocity structures beneath the Sichuan basin and the Alashan block were also revealed, which may represent the lithospheric roots of these structures. These rigid lithospheric roots may have obstructed the eastward extrusion of the Tibetan plateau and led to stress accumulation and release (triggering earthquakes) in the Longmenshan Orogenic Belt and the northern part of the NSSZ. Because of this obstruction, the eastward extrusion was redirected southeastward to Yunnan in the southern part of the NSSZ, which led to stress accumulation and release causing earthquakes along the Honghe and Xiaojiang faults. The results from this study reveal a high-velocity structure with a subducted slab-like appearance that may represent vestiges of the Paleo-Tethys oceanic lithosphere, which subducted beneath the ELIP and initiating large-scale mantle return flow or mantle upwelling, contributing to the formation of the ELIP.



2015 ◽  
Vol 7 (4) ◽  
pp. 3587-3643
Author(s):  
J. Briais ◽  
F. Guillocheau ◽  
E. Lasseur ◽  
C. Robin ◽  
J. J. Châteauneuf ◽  
...  

Abstract. The uppermost Cretaceous to early Palaeogene is a period of major deformations of the western part of the Eurasian plate with prominent basin inversions starting from the Coniacian onwards. These deformations occur in a complex geodynamic setting within both the context of the Africa–Eurasia convergence and the North Atlantic opening. While Mesozoic graben inversions have been extensively studied, particularly in Eastern Europe and the North Sea, more gentle deformations that affect thicker crust areas (intracratonic basins and emerged lands) are not as well documented. The objective of this study is to constrain the exact timing, type and magnitude of the early Palaeogene deformations affecting the intracratonic Paris basin and to integrate them at the Western European scale. Relatively gentle deformations are attempted through a high-resolution reconstitution of its stratigraphic record based on outcrops and well-dated wells, and a high number of well-logs that are correlated using the "stacking pattern" sequence stratigraphic technique. Two orders of sequences are identified (third- and fourth-order) and correlated throughout the basin. Basin geometric and palaeogeographic reconstitutions are based on sediment thickness and facies analysis. Two-dimensional accommodation space measurements were taken in order to quantify the magnitude of the deformations. Three phases of deformation were recognized. 1. An intra-Maastrichtian–pre-Thanetian (59 Ma) deformation, with major uplift and erosion of the Cretaceous strata with two sub-periods of deformation: Maastrichtian–pre-middle-Danian and Upper Danian–pre-Thanetian long wavelength deformations. This period of major deformation is coeval with Upper Cretaceous–pre-Danian compressive deformations linked to the Africa–Eurasia convergence in southern France and with volcanic activity from the North Atlantic to Massif Central and the Rhenish Shield during the Palaeocene; 2. an early Ypresian (55.1–54.3 Ma) medium wavelength deformation (× 10 km), here reported to be a stress rearrangement related to the onset of the North Atlantic opening; 3. an uppermost Ypresian (49.8 Ma) long wavelength deformation (× 100 km), contemporaneous with flexural compressive deformations in the Aquitaine Basin (Pyrenean deformation), and related to the Iberia–Eurasia convergence.



Sign in / Sign up

Export Citation Format

Share Document